
Ultramicroscopy 33 (1990) 159-166 159 
North-Holland 

ELECTRON DIFFRACTION AND LATTICE IMAGE S I M U L A T I O N S  W I T H  THE INCLUSION 
OF H O L Z  REFLECTIONS 

L.C. QIN and K. URBAN 

lnstitut fiir Festk6rperforschung, Forschungszentrum Jiilich GmbH, Postfach 1913, D-5170 Jiilich, Fed. Rep. of Germany 

Received 20 March 1990 

The formulae that can be used to calculate wave functions for transmission high-energy electron diffraction including 
reflections from higher-order Laue zones (HOLZs) are summarized by using~ the Bloch wave formulation and the multislice 
formulation for the dynamical electron diffraction theory, respectively, in the multislice formulation, three different 
algorithms of calculating phase grating functions, fraction projection algorithm (FPA), section projection algorithm (SPA) and 
conditional projection algorithm (CPA) are examined. Electron diffraction patterns and lattice images for the YBa2Cu307 
crystals are simulated and compared with Bloch wave calculations. In summary, the FPA calculations do not include HOLZ 
reflections; the SPA and CPA give much stronger HOLZ reflection intensities than the Bloch wave algorithm. Experimental 
diffraction patterns support the Bloch wave results. However, there is no detectable difference found in the simulated lattice 
images by using the above-mentioned computing schemes, which suggests that the HOLZ reflections only play a minor role in 
forming lattice images. 

1. Introduction 

Transmission high-energy electron diffraction 
from crystals can often be treated in a two-dimen- 
sional approximation by considering reflections 
from the zero-order Laue zone only. This is justi- 
fied by the very large radius of the Ewald sphere. 
However, there are cases in which the third di- 
mension becomes non-negligible, e.g., when a con- 
vergent-beam electron diffraction (CBED) pattern 
is used for crystallographic analyses or when the 
crystal unit cell dimension along the diffraction 
zone axis is large. In particular, this refers to 
alloys with large unit cells like many members of 
the family of tetrahedrally close-packed phases 
and the ceramic high T c superconductors with 
c-axis lengths of from 1.2 nm for YBa2Cu30 7 to 
3.8 nm for Bi2Sr2Ca2CuaO10. Therefore, for the 
purpose of providing a reliable theoretical estima- 
tion of electron diffraction intensities and a cor- 
rect interpretation of lattice images at atomic reso- 
lution, it is necessary to take into account the 
reflections from higher-order Laue zones (HOLZs). 

When the crystal potential can be expanded as 
a three-dimensional Fourier series, in the Bloch 
wave formulation [1,2], HOLZ reflections can be 
included by having the corresponding Fourier 
components included in the dynamic matrix ex- 
plicitly [3,4]. The problem can then be solved by 
transforming the equations into an eigensystem 
determined by the dynamic matrix. 

In the treatment of HOLZ reflections by using 
the multislice formulation [5], the depth-depen- 
dence of the crystal potential within a unit cell 
was taken into account by using a slice thickness 
smaller than the crystal periodicity along the dif- 
fraction zone axis [6-8]. In practice this has led to 
several different algorithms for calculation of the 
phase grating functions that must be used in the 
multislice iteration procedure. These are three al- 
gorithms that can be used to prepare phase grating 
functions for this case. In this paper they are 
referred to as fraction projection algorithm (FPA), 
section projection algorithm (SPA) and condi- 
tional projection algorithm (CPA). Only the CPA 
is to give the most reliable projected potential 
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within a sub-shce. However, this method requires 
very long computing times. Therefore, in order to 
keep the computing time within reasonable limits, 
calculations have frequently been carried out by 
using FPA or SPA. Up to now there have been no 
detailed investigations to see to what extent these 
two approximations may be valid without intro- 
ducing severe errors. Furthermore, in the multi- 
slice method a number of approximations are made 
whose validity needs to be tested with respect to 
the inclusion of HOLZ reflections in the calcula- 
tions. 

In this paper we first review both the Bloch 
wave and the multislice formulations for the dy- 
namical electron diffraction theory with the inclu- 
sion of HOLZ reflections. In the multislice formu- 
lation we describe all three algorithms mentioned 
above to calculate phase grating functions in de- 
tail. As a practical example, electron diffraction 
patterns and lattice images from YBazCu307 su- 
perconducting crystals along zone axis [001] are 
simulated by using each algorithm. The results are 
compared with the intensity distributions in an 
experimental electron diffraction pattern. We find 
that, although the three-dimensionality of the 
crystal potential has been taken into account 
properly in the CPA, there are still apparent dis- 
crepancies if the simulated results are compared to 
experimental ones. The reasons for the discrepan- 
cies found are discussed. 

2. Theoretical formulations 

Throughout the paper we assume that the Laue 
condition is satisfied, i.e. the diffraction zone axis 
is parallel to the surface normal of the thin crystal 
slab and the z-axis is chosen to be parallel to the 
diffraction zone axis. 

2.1. Bloch wave formulation 

where m is the relativistic mass of the electron, E 
is the incident electron accelerating potential, h is 
Planck's constant and e is the electric charge of 
the electron. 

Since it is periodic, we can expand the crystal 
potential as a Fourier series based on the recipro- 
cal lattice: 

V(r) =EV~exp(2~ ig .r ) ,  (2) 
g 

where Vg is the g th  Fourier coefficient of the 
potential and g is a reciprocal lattice vector. 

The electron wave function within the crystal 
can be represented by a superposition of Bloch 
waves: 

b(J)(r, k ) =  E C g  (j) exp[2~ri(k u) + g ) . r ] ,  (3) 
g 

where Cg (j) are the Bloch wave coefficients. By 
defining 

U~=(2mlel/h2)Vg (4) 

and 

K 2 = ( 2 m l e l / h 2 ) ( E +  V0), (5) 

V 0 being the mean inner potential, we obtain the 
following by substituting eqs. (2)-(5) in eq. (1): 

g h~g  

× exp[E~i (k  (j) + g ) - r ]  = 0 .  (6) 

Eq. (6) holds for all points r in the crystal, hence 
the coefficient of each exponential term must be 
equal to zero. Thus we have the set of equations 

[ _ + q, , ,  + r o. 
h ~ g  

We start from the SchriSdinger equation which 
determines the electron wave function + ( r )  within 
the crystal potential V(r): 

~TZqJ(r)+ 8~r2mlel [E + V(r)]~(r)=O, (1) 
h 2 

For each reflection g considered there is one such 
equation. In high-energy electron diffraction we 
can ignore the backscattered reflections which al- 
lows the approximation 

K 2 - k ~  = - 2 K ~ ( k z - K z )  = - 2 K z T ,  (8) 
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where ¥ = k ~ - K ~  and the subscript z indicates 
the vector component parallel to the z-axis. Eq. 
(7) can then be rewritten as 

E Ug-h-(U°+g2+2K'g)6~h] 
h -2-K-~ (i g-g-]/G~ ~ q = v q ,  (9) 

which forms an eigensystem in which 8gh is the 
Kroneker symbol. All the above equations are 
valid for the general case of a three-dimensional 
crystal potential. By solving the eigenequations we 
may obtain the eigenvalues 3, ° )  (and therefore 
k (j)) and eigenvectors C~ j). 

The dynamic matrix of eq. (9) is non-Hermitian 
and therefore we may end up with having complex 
eigenvalues by using normal numerical diagonali- 
zation procedures. But we can make a non-or- 
thogonal transformation [9], defining 

~J) = (1 + gz/I,:z)'/2q j). 

This yields 

~ ( U~ - h - [ Uo + g 2 + 2 ( K " g ) ] 6~d, } F~ j ) 
. . . . . .  l - - ~ - - - - - - ~ f  
2(K~ + g~) (Kz+h~)  

(10) 

= y'J)F~ j) . (11) 

Now the matrix on the left-hand side is Hermitian 
and we obtain real eigenvalues 7 (j) and unitary 
eigenvectors F~ j). By using eq. (10) we can obtain 
the original eigenvectors C~ j) as wanted. The total 
wave function is a linear combination of all indi- 
vidual Bloch waves 

+(,)  = E ~ ' " E  c,'J) exp[2~ri(k (j) + g ) ' r ] ,  
J g 

(12) 

where in an ideal crystal a ( j )  is the excitation 
amplitude of Bloch wave b(J)(r, k), and 

a(J) = Co (j)* . (13) 

2.2. Multislice formulation 

In the multislice formulation a crystal slab is 
divided into many thin slices. Each slice is ap- 

proximated as a phase object which modifies only 
the phase term of the incident electron wave. Zero 
potential is assumed between the neighbouring 
slices and the propagation of electron waves inside 
the gap is approximated as a Fresnel diffraction 
process. If q,N(X, y)  represents the two-dimen- 
sional wave function at the exit surface of the Nth  
slice (z = z~v), qN(X, y)  is the phase grating func- 
tion describing the phase change by the Nth  slice, 
pN(X, y)  represents the propagation function 
(propagator) describing the Fresnel diffraction of 
waves from the Nth  slice (at z = ZN) to the ( N +  
1)th slice (at z = Z N + I )  , then the electron wave 
function at the exit surface of the (N  + 1)th slice 
~U+l(X, y )  is 

y) 

,(x, y)[~u(X, y)*pN(X, y)], (14) 

denotes a convolution. The phase grating 
of the (N + 1)th slice is given by 

~N+I(X~ 

= qN+ 

where * 
function 

qu+l(X, Y l=exp[ iov¢N+"(X ,  y )  Azu]. 

The interaction constant o is defined as 

rr 2 
O h E  1 -~- (1 -~- 1~2) 1/2'  

(is) 

where X is the electron wavelength and fl is the 
relativistic factor, o/c, with v and c being the 
speed of the electron and that of light, respec- 
tively. The projected potential between z u and 
ZN+ a is given by 

I.ZN+I v~N+'(x' Y)=S-~NJzN V(x, y,z) dz, (16) 

in which Az u = zu+ , - -z  u is the thickness of the 
(N + 1)th slice. And the Fresnel propagator is 

i [ i~" z 2  J pN(x, y)= x--sG~ exp[x-SG~ tx +y2) . (17) 

For simplicity, but without loss of generality, 
we assume in the following discussions that all 
slices have the same thickness of Az and the z-axis 
is parallel to the c-axis of the crystal lattice. The 
crystal is assumed to be of orthogonal symmetry 
with lattice parameters a, b and c. 
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By substituting eq. (2) into eq. (16) we can 
deduce the following expression for the projected 
potential 

v(N+I)(x, y) 

= ~-~ E V(hkl) 
sin(~rl Az/c) 

hkt ~rl/c 

×exp(2rrilZNo/C) exp[27ri( h--~--~ 

(18) 

where 

ZNo = Z N ~- Az/2, 

and V(hkl) is the Fourier coefficient of the crystal 
potential at g = ha* + kb* + lc*, in which hkl 
are the Miller indices of reflection (hkl) and a* ,  
b*, c* are the basis vectors of the reciprocal 
lattice. If a unit cell with length c is evenly divided 
into n slices, then we can have 

v(N+I)(x, y) 

= E V(hkt) 
hkl 

sin( rrl/n ) exp(2 ~r i lZNo/C) 
rrl/n 

x exp 2~ri -~- + 

h2 
2~rmeV~e,, ~hkt E f/(hkl) 

j = l  

[ ×exp  -2~r i  + --b-- + 7rl/n 

×exp(21rilzuo/C)} exp [ 2 r r i ( - ~  + - b -  ' 

(19) 

where V~e n is the volume of the unit cell, fj(hkl) is 
the atomic scattering amplitude of atom type j for 
reflection (hkl), (xi, y/, zj) are the relative coor- 
dinates of the a tom in the unit cell and N a is the 
total number of atoms in the unit cell. The phase 
grating function can be calculated by using eq. 
(15). When n = 1, i.e. the slice thickness is equal 

to the lattice periodicity along the diffraction zone 
axis, eq. (19) can be simplified using Az = c to 

v(N+I)( X' Y) - ~ "  E V(hkO) exp 2rri -a- + • 
hk 

(20) 

From eq. (14) we see that the multislice formu- 
lation is an iteration procedure. In this method the 
phase grating behaves as a scattering object which 
is determined by the crystal structure. It scatters 
the incoming electron waves from the previous 
slice. The propagat ion process, however, intro- 
duces phase changes due to the deviation from the 
exact Bragg condition for each beam. The func- 
tion of each term can be seen more clearly if we 
look at formula (14) in Fourier space 

q~v+ a (h ,  k )  

= Qu+a(h, k)* [~u(h, k) Pu(h, k)]  (21) 

and 

PN(h, k)  = exp[ 
I 

- - in  
(h/a)  2 + (k/b)  2 ] 

K Az ] , 

(22) 

where q~, Q, and P denote the Fourier transforms 
of ~b, q and p,  respectively. For n = 1, we see 
from eq. (20) that all the possible interactions to 
be considered are those occurring between reflec- 
tions on the l = 0 reciprocal plane. Therefore in 
this case H O L Z  reflections are not considered. 
However, if n > 1, i.e., when the slice thickness is 
smaller than the crystal periodicity along the zone 
axis, the scattering process, which is described by 
QN+I(h, k) in eq. (21), involves terms with l ~  0. 
I f  we define a two-d imens iona l  funct ion 
VN+a(h, k) as 

V +l(h, k) 

= ~ V(hkl) sin ~rl/nexp(Z~rilzuo/C), (23) 
l 7rl/n 

then eq. (19) becomes 

vp(N+')(X, y) 

= ~ Vu + , ( h , k ) exp [ 2 ~r i ( h--~ + k-~ ) ] (24) 
hk 
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and 

Qzv+l(h, k)=~(exp[ioV~N+°(x, Y)] AzN). 

Expanding the exponential function into power 
series we obtain 

Qu+,(h, k) 

=o~{1 + iov(pN+'>(x, y) 

+ ~ [ v ( N + I , ( x ,  y)]2 

(io)3[v~N+,,(x, y ) ] 3 +  ) + ~  --. 

= ~(h, k) + iaV/e+l(h, k) 

( i~ )  ~ 
+ ~ V N + a ( h ,  k)*V/+l(h, k) 

00)  3 
"+- ~ V/+l(h  , k)*Vu+,(h, k) 

* VN+I(h , k)  + . . . .  (25) 

where o~ represents a Fourier transform. On the 
right-hand side of this equation, the first term 
describes the forward transmission of the incident 
wave from the last slice, the second term describes 
a single scattering with scattering vector (h, k), 
the third term described double scattering and so 
forth. From this expression and taking eq. (23) 
into account we see that the scattering does in- 
clude the HOLZ reflections with l 4: 0. 

There are three different algorithms that have 
been widely used to calculate phase grating func- 
tions. They are: 
(a) The fraction projection algorithm (FPA): A 
phase grating function calculated over the length c 
is evenly divided into n sub-phase grating func- 
tions. 
(b) The section projection algorithm (SPA): In 
this algorithm, the summation in eq. (19) is carried 
out over those atoms only which lie within the 
corresponding sub-slice. The sub-slice is treated as 
the unit cell of an infinitely extended artificial 
crystal obtained by periodic stacking of these cells 
along the c-axis. 

(c) The conditional projection algorithm (CPA): 
In this case, a sub-phase grating function is calcu- 
lated by using eq. (19), in which the summation is 
done over all atoms within the unit cell of the real 
crystal. 

In the three algorithms, the FPA always gives 
identical sub-phase grating functions, but SPA 
and CPA may give different sub-phase grating 
functions in general. 

3. Simulations for YBa2Cu30 7 crystals 

For a demonstration we have used the 
YBa2Cu 307-x crystal data in the simulations. The 
crystal has space group Pmmm with lattice param- 
eters as a = 0 .3 8 2  nm, b=0 .389  nm, c=1.168 
nm. The zone axis is chosen to be [001] and the 
sample thicknesses used are 46.70 nm for diffrac- 
tion and 5.84 nm for lattice imaging. The accel- 
erating voltage is 200 kV and the symmetrical 
Laue condition has been assumed. 

3.1. Electron diffraction patterns 

Fig. l a  depicts the electron diffraction pattern 
computed by using the Bloch wave algorithm. In 
total 269 beams have been included in the calcula- 
tion, among which 58 beams are HOLZ reflec- 
tions. The display is in a logrithmetic scale and the 
threshold value is 10-12 of the total intensity. Figs. 
l b - l d  give the diffraction patterns computed by 
using the multislice algorithm [10]. Six sub-phase 
gratings were used in the computations. Fig. lb  is 
the result with FPA phase grating and figs. lc and 
ld  are the results with SPA and CPA phase grat- 
ings, respectively. 

In fig. 2 an experimental electron diffraction 
pattern, taken from an area with thickness esti- 
mated to be around 50 nm, is given for compari- 
son with the simulated patterns. It was taken with 
a JEOL 2000EX transmission electron microscope 
operating at 200 kV. The intensity of HOLZ re- 
flections is extremely weak, as one can see from 
the negative recording films. But it vanishes on the 
positive prints. This result agrees well with that of 
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Fig. 1. Simulated 200 keV electron diffraction patterns of YBa 2Cu 307_r crystal with thickness of 46.70 nm along [001] orientation. 
(a) Bloch wave result; 269 beams in total including 68 HOLZ reflections. (b-d) Multislice results with 64 × 64 FFT algorithm and 

three different algorithms in calculating phase grating functions: FPA (b), SPA (c) and CPA (d). 

Fig. 2. An experimental diffraction pattern from YBa 2Cu 307 x 
crystals taken with a Jeol 2000EX electron microscope. 

the Bloch wave calculations. Since FPA multislice 
formulae do not include HOLZ reflections, the 
results are likewise in agreement with the experi- 
ments. However, in disagreement with the experi- 
mental results both the SPA and CPA multislice 
formulae yield quite strong HOLZ reflections. So 
only the Bloch wave simulation is in agreement 
with the experiments, i.e. the HOLZ reflections 
are very weak. 

3.2. Lattice images 

By using the EMS computer code [11] we have 
also simulated lattice images for the same crystal, 
but at a smaller thickness than encountered in the 
experiments of lattice imaging. Fig. 3 is a halftone 
represention of the simulated images. The left 
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tation of the wave function took full account of all 
H O L Z  reflections, they were excluded by the 
aperture in the final image calculation. 

O O Q ~ O O Q  

O ~ W O O e O  

~ m ~ D m o  

o Q o ~ m e o  

l ~ o e e o  

~ m ~ e e o  

O O O 0 0 0 Q  

Fig. 3. Simulated lattice images of YBa2Cu3OT_ x crystal at a 
thickness of 5.84 nm; C s = 1.2 mm; objective aperture diameter 
= 30.0 nm-l; defocus spread = 10.0 nm; semi-divergence an- 
gle = 0.5 mifiradians; voltage = 200 kV. Wave function series: 
Bloch wave (left) and CPA multislice (right). Underfocus series: 

from top to bottom 67.0, 82.0 and 97.0 nm. 

column gives a defocus series calculated by using 
the Bloch wave algorithm with 201 beams from 
the zero-order Laue zone. The right column shows 
the results of a CPA multislice computat ion with 
the same sampling parameters  as described in 
section 3.1. All three multislice algorithms pro- 
duce results identical with those of the Bloch wave 
calculation. 

The objective aperture radius used in the simu- 
lations is 15.0 nm -1 corresponding to a limiting 
spatial resolution of about 0.6 nm (much smaller 
than the present information limit of m o d e m  elec- 
tron microscopes) under linear imaging condi- 
tions. Therefore, although the dynamical compu- 

4. Discussion 

We have seen that in multishce calculations the 
three algorithms used for calculating phase grating 
functions give rise to quite different H O L Z  reflec- 
tion intensities. In FPA, the projected potential 
used in calculating the phase grating functions 
excludes all terms but those with l = 0. Therefore 
the contributions from H O L Z  reflections are a 
priori not included. In SPA, it is assumed that the 
potential is periodic along the c-axis with the 
periodicity of c / n  which is the thickness of each 
sub-slice. But the real structure has c as its peri- 
odicity along the c-axis. In general this leads to 
erroneous structure factors and, as a consequence, 
to errors in the projected potential calculated 
according to eq. (18). It  is only the CPA that 
calculates the projected potential within a sub-slice 
correctly. 

The comparison of the experimental figure with 
the SPA and CPA simulations revealed that there 
are severe discrepancies. The SPA and CPA phase 
gratings give much stronger intensities for H O L Z  
reflections while there is a good agreement with 
the Bloch wave calculation. This can be explained 
as follows: only those reflections which have small 
excitation errors and non-zero structure factors 
would occur during the scattering process. How- 
ever, by looking at eq. (25) we can see that a lot of 
reflections that may not have small excitation 
errors are included in the scattering process but 
with quite large scattering strength (as the magni- 
tude of the corresponding structure factor). This 
should account for the very large value of the 
intensities of those H O L Z  reflections. Therefore 
from a general point of view, the multislice al- 
gorithm gives stronger intensities for H O L Z  re- 
flections. On the other hand, in the Bloch wave 
formulation, the excitation error corresponding to 
the relevant reflection is taken into account by the 
value of the diagonal terms of the dynamic matrix. 
Therefore the artifacts mentioned above are 
avoided. 



166 L.C. Qin, K. Urban / Electron diffraction and lattice image simulations 

Besides, the parabolic approximation to the 
Ewald sphere introduces some errors; in particular 
it does so when it is for high scattering-angle 
terms, such as H O L Z  reflections. 

Although the Bloch wave algorithm provides us 
with quite accurate H O L Z  reflection intensities, it 
is not practical for many of the most interesting 
problems in high-resolution electron microscopy. 
The reasons for this are prohibitively long compu- 
tation times and the rounding-off errors intro- 
duced by the diagonalization routines in computa-  
tions requiring large numbers of beams, as in the 
image simulation of crystal defects by using the 
periodic continuity approximation. 

As for lattice imaging, however, the contrast 
transfer function of an electron microscope always 
has an effective cut-off threshold value in spatial 
frequencies, This is due to the electrical instabili- 
ties of the power supply and the mechanical insta- 
bilities of the working environment. To a first 
approximation, they are exponential damping 
functions of spatial frequency. In practical experi- 
mental lattice imaging the final images will be 
largely determined by reflections of low spatial 
frequencies due to the particular shape of the 
contrast transfer functions. In addition, these re- 
flections at smaller scattering angles are much 
stronger than the others in general. Another factor 
is, in most lattice imaging experiments, if not all, 
the objective aperture being used would have ex- 
cluded any H O L Z  reflections and therefore the 
only effect of the H O L Z  reflections would then be 
the influence on the amplitudes of those reflec- 
tions included in the aperture, which are low-order 
reflections. However, the influence is minor, as 

shown in the simulations, and therefore it is plau- 
sible to ignore the H O L Z  reflections in lattice 
image simulations. 

5. Concluding remarks 

(1) When H O L Z  reflection intensities are re- 
quired, the Bloch wave algorithm should be used. 

(2) In simulating lattice images, the existence 
of H O L Z  reflections has only minor effects on the 
final image intensity, and they can usually be 
ignored. The three different algorithms in calculat- 
ing phase grating functions do not give rise to 
detectable image intensity distribution. Therefore 
one can simply use the fraction projection al- 
gorithm (FPA) to calculate phase grating func- 
tions in order to reduce the computer  time needed. 
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