
www.elsevier.com/locate/cplett

Chemical Physics Letters 406 (2005) 106–110
Electron diffraction from elliptical nanotubes
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Abstract

A quantitative method for the structural determination by electron diffraction of nanotubes of elliptical cross-section is developed

as a general case while the cylindrical nanotubes are treated as a special class. We found that the chiral indices of a carbon nanotube

can always be measured from the electron diffraction pattern regardless if the nanotube is circular or elliptical. An experimental

electron diffraction pattern from a partly-deformed carbon nanotube is also analyzed. Assisted with numerical simulations, it is

determined that the observed carbon nanotube has chiral indices (15,7) with 8� tilt relative to the horizontal plane and eccentricity

of 0.553.

� 2005 Elsevier B.V. All rights reserved.
1. Introduction

Carbon nanotubes have been a focus of intensive

studies in materials research for more than a decade

since the discovery due to their exceptional mechanical

and electrical properties [1,2]. For example, depending

on the chiral indices of the nanotube, a carbon nanotube

can be either metallic or semiconducting [3–5]. Although

carbon nanotubes have the highest tensile strength in the

axial direction, they are very flexible and are easily de-
formed radially [6–9]. Moreover, regardless if a carbon

nanotube is metallic or semiconducting, deformation

of the nanotube would change its electronic properties

drastically such as inducing metal–insulator or insula-

tor–metal transitions [10–12]. For instance, theoretical

calculations indicate that the band-gap of a carbon

nanotube can be reversibly engineered by radial

deformation [11].
As a matter of fact, it is likely in reality that elliptical

geometry is more fitting to describe the true structure of

nanotubes. Within this framework, nanotubes of circu-
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lar cross-section can be considered as a special class of

the general elliptical nanotubes of major axis a and min-
or axis b. When a = b, it is the case for circular nano-

tubes of radius r0 = a = b.

Electron diffraction has been one of the most power-

ful techniques in determining accurately the atomic

structure of both single-walled and multiwalled carbon

nanotubes [13–19]. In addition, in the imaging mode,

it also offers the capability of locating and identifying

morphological features including deformation of carbon
nanotubes in detail.

In this Letter, we present a study of the diffraction

from elliptical nanotubes with both analytic and numer-

ical analyses. A deformed carbon nanotube that has an

elliptical portion is used as an example to illustrate the

application of the theoretical method.
2. Theoretical considerations

A carbon nanotube can be considered as pairs of heli-

ces along which carbon atoms are distributed in an or-

dered fashion. In an elliptical carbon nanotube, each

helix revolves on the surface of an elliptical cylinder
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which is characterized by its major axis a and minor axis

b as shown in Fig. 1. Fig. 1a shows schematically the

side-view of a setting of electron diffraction where an

elliptical carbon nanotube is tilted with respect to the

horizontal plane by an angle b. The analytic expression

for the scattering amplitude from an elliptical nanotube
is (cf. Appendix A)

F ðR;U; lÞ ¼
X
j

X
n;m

f gðn; lÞJnð2pRr�Þ exp½inðU� þ p=2Þ�

� exp½�in/j þ 2pilzj=c�; ð1Þ

where f is the atomic scattering amplitude for elec-

trons, (/j, zj) are the cylindrical coordinates of carbon

atoms, Jn is the Bessel function of order n, c is the ax-

ial periodicity of the elliptical nanotube, r� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2cos2Uþ b2sin2U

p
, tanU* = (b/a) tan U and gðn; lÞ ¼R

exp½2pilzðhÞ=c� inh�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2cos2hþ b2sin2h

p
dh is a spe-

cial function.

In the radial projection, the geometrical relationship
between the helices is the same as that for the circular

carbon nanotube. For a discontinuous helix on the sur-
Fig. 1. (a) Schematic showing electron diffraction from an elliptical

carbon nanotube in a side view. The tilting angle between the tubule

axis and the diffraction plane is b. (b) Cross-sectional view of an

elliptical carbon nanotube with / (equal to reciprocal azimuth angle U)
defining the azimuth angle between the major axis and the diffraction

plane.
face of the elliptical nanotube, the pitch length is C = Ch

tan (60� � a) and the axial distance between neighboring

atoms on a helix in the axial direction D = a0
sin(60� � a), where Ch is the perimeter length and a is

the helicity of the nanotube, respectively. Inserting C

and D into the selection rule Eq. (A.9) in Appendix A,
we can obtain the selection rule for an elliptical carbon

nanotube (u, v) as

l ¼ ½nðuþ 2vÞ þ 2mðu2 þ v2 þ uvÞ�=ðuMÞ; ð2Þ
where M is the maximum common divisor of (2u + v)

and (u + 2v). From Eq. (2), we can see that the selection

rule is the same for both circular and elliptical nano-

tubes. This is because the selection rule is only governed

by the structural parameters in the axial direction which

are not affected by any radial deformation perpendicular

to the tubule axis [20]. By taking one atomic helix of the

nanotube as a reference /ð0Þ
0 ; zð0Þ0

� �
, we can have the fol-

lowing rotational and translational shifts for all the
helices:

/ð0Þ
j ¼ A½ð2pja0 cos að1� e2Þ1=4=ChÞje�;

zð0Þj ¼ �ja0 sin a;

(
ð3aÞ

/ð1Þ
j ¼ Abð2pðja0 cosaþ a0 sina=

ffiffiffi
3

p
Þð1� e2Þ1=4=ChÞjec;

zð1Þj ¼�ja0 sinaþ a0ðcosaÞ=
ffiffiffi
3

p
;

(

ð3bÞ
where the superscripts 0 and 1 stand for the two helices

within the pair, A[xje] is an elliptical function which is

the inverse function of the elliptic integral of the second

kind E[/je] [21], and the subscript j ranges from 0 to

u � 1 specifying all the u pairs of helices constituting

the nanotube. The elliptic function A[xje] in Eq. (3) is

not linear in j. However, since all the parameters in

Eq. (3) are independent of R and U, we can obtain the
scattering amplitude for the elliptical carbon nanotube

(u, v) on the layer line l as

F uvðR;U; lÞ ¼
X
n;m

f gðn; lÞnuvðn;m; lÞ

� exp½inðU� þ p=2Þ�Jnð2pRr�Þ; ð4Þ

where

nuvðn;m; lÞ ¼
X
j

expð�in/j þ 2pilzj=cÞ; ð5Þ

which can be treated as a constant for a particular Bessel

function of order n on layer line l.

The difficulty in expressing nuv(n,m,l) in a more expli-

cit analytic form results from the variations of the rela-

tive rotational shifts between neighboring helices in an

elliptical nanotube. Fig. 2 shows the axial section of
an elliptical carbon nanotube. The black dots, standing

for the intercepts of the constituting helices, are evenly

distributed on the perimeter of the elliptical cylinder.



Fig. 2. Schematic illustrating the parameterized expression of an

elliptical carbon nanotube in cross-sectional view, with a and b

representing the semi-major and semi-minor axis of the ellipse. h is the

parameter defined on a circle and / is the corresponding true angle

defined for the ellipse. The black dots on the ellipse are evenly

distributed on the perimeter representing the intercepts of the

discontinuous atomic helix revolving on the surface of the elliptical

nanotube. Although the neighboring dots are equally-distanced, the

difference in azimuth angle / between neighboring dots varies with the

parameter angle h.

Fig. 3. Transmission electron microscope (TEM) image and electron

diffraction pattern of a partly-deformed carbon nanotube (15,7).

(a) TEM image of a nanotube of diameter 1.52 nm. The central section

of the nanotube is elliptically deformed due to the adsorbed

amorphous carbon on the nanotube surface. (b) Electron diffraction

pattern of the nanotube. Nine diffraction layer lines are of significant

intensities in the diffraction pattern and 2 mm symmetry is absent,

indicating that the nanotube is tilted.
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The relative rotational shifts /j used in our derivation of

the scattering amplitude are expressed by h in the circle

of Fig. 2, where we can see that D/ between neighboring

helices changes significantly. On the other hand, the ax-

ial shifts zj between the constituting helices are exactly

the same as those for circular carbon nanotubes, due
to the fact that radial deformation does not alter the

z-coordinates of carbon atoms in the nanotube.

The electron diffraction patterns of elliptical and cir-

cular nanotubes share many similarities. Firstly, the

selection rule for elliptical carbon nanotubes (Eq. (2))

is the same as that for circular nanotubes. Secondly,

since the diffraction intensity distribution on layer line

l is stipulated by I(R,U,l) = jF(R,U,l)j2 and only one Bes-
sel function contributes dominantly to the diffraction

layer line l in the experimental data [22], the phase term

containing U is negligible in the diffraction intensity dis-

tribution. This suggests that the chiral indices of an

elliptical carbon nanotube (u,v) can still be measured di-

rectly from the electron diffraction pattern as for cylin-

drical carbon nanotubes.

However, it should be noted that the radial variable
r* in Eq. (4) is not a constant. Instead, it is a function

of the azimuth angle U and therefore the intensity profile

of the Bessel function is also dependent on the azimuth

angle U. The strong dependence on the azimuth angle

leads that the symmetry of electron diffraction patterns

from an elliptical nanotube may be lower than 2 mm,
especially under inclined incidence, while the electron

diffraction patterns of circular nanotubes always has

2mm symmetry [22].
3. Experimental example and discussion

Fig. 3a shows a transmission electron microscope im-

age of a single-walled carbon nanotube. Due to the ad-

sorbed amorphous carbon on the surface, the nanotube

is partly deformed as reflected in the narrowing of the

measured diameter indicated by the two arrows in the

figure. The diameter of this nanotube is measured to

be 1.52 nm from the cylindrical section in the image.
Fig. 3b is an electron diffraction pattern of the nano-

tube. There are nine reflection layer lines clearly visible

in the diffraction pattern. By measuring the electron

scattering intensity distribution and the ratios of the

layer line spacings of the principal layer lines, we deter-

mined that the nanotube has chiral indices (15,7) of

helicity 18.1� and diameter 1.52 nm. It is a semiconduct-

ing nanotube.



Fig. 4. (a) Model structure of carbon nanotube (15,7) with the central section elliptically deformed by adsorbed carbon molecules. (b) Simulated

electron diffraction pattern of the partly-deformed carbon nanotube structure in (a) placed at a tilting angle of 8� with respect to the diffraction plane.

(c) Intensity contour of the simulated data shown in (b) plotted on the experimental electron diffraction pattern exhibiting excellent agreement.
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Close examination of the diffraction intensity distri-
bution on the principal layer lines in the electron diffrac-

tion pattern reveals that the mirror symmetry about the

tubule axis is no longer present, due to the elliptical

deformation. Fig. 4a shows a model structure of carbon

nanotube (15,7) with its central part deformed ellipti-

cally. The ratio of a/b for the deformed part is about

1.2 and it corresponds to an eccentricity of

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2=a2

q
¼ 0:553, which has been considered

large enough to change the electrical properties of a car-

bon nanotube. We have carried out a series of numerical

simulations of the electron diffraction intensity distribu-

tion at various tilting angles. Fig. 4b shows a simulated

electron diffraction pattern from the model structure
with a tilting angle b = 8�. As can be seen in the simu-

lated diffraction pattern, the mirror symmetry across

the tubule axis has indeed disappeared due to the tilting

of the deformed carbon nanotube relative to the incident

electron beam. In Fig. 4c, the profile of the calculated

electron diffraction intensities are plotted on the experi-
mental data. The intensity distribution agrees very well
for all the layer lines in the diffraction pattern, suggest-

ing that the eccentricity of the nanotube shown in Fig.

3a is about 0.553 with a tilting angle of about 8� relative
to the horizontal plane.

It is worth mentioning that the partly-deformed car-

bon nanotube structure observed experimentally in

Fig. 3a is suitable for building carbon-based diode junc-

tions. By controlling the elliptical deformation on the
central section of the semiconducting nanotube, this de-

formed section may become metallic and therefore an

insulator–metal–insulator junction could be formed.
4. Conclusions

We have developed a general theory to account for
the diffraction from elliptical carbon nanotubes. The

chiral indices of a carbon nanotube can be measured di-

rectly from the electron diffraction pattern regardless if
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the nanotube is circular or elliptical. However, the elec-

tron diffraction pattern of an elliptical nanotube may

have symmetry lower than 2mm when it is tilted, as illus-

trated by an experimental electron diffraction pattern

from a partly-deformed carbon nanotube of chiral indi-

ces (15,7) with eccentricity of 0.553.
Appendix A

The electron scattering amplitude from a coulombic

potential V(r,/,z) in cylindrical coordinates is [20].

F ðR;U; ZÞ ¼
Z

V ðr;/; zÞ

� exp½2piðrR cosðU� /Þ þ zZÞ�rdrd/dz:

ðA:1Þ

For a continuous elliptical helix, its potential func-

tion can be expressed as

V ðr;/; zÞ ¼ V 0d½r � r0ð/Þ�dðz� C/=2pÞ; ðA:2Þ
where V0 is a constant, C is the pitch length of the helix,
and r0(/) is the radial coordinate of the elliptical cylin-

der that is dependent on the azimuth angle. Using a

parameter-based coordinates for the elliptical cylinder

defined as

x ¼ a cos h ¼ r cos/

x ¼ b sin h ¼ r sin/

zðhÞ ¼ C
2p tan

�1 b
a tan h

� �
;

8>><
>>: ðA:3Þ

where a and b are the major and minor axes, respec-

tively, of the ellipse of eccentricity e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2=a2

q
.

The scattering amplitude for the elliptical helix becomes

F ðR;U; ZÞ ¼
Z

abV 0 expf2pi½Rr� cosðU� � hÞ

þ ZzðhÞ�g dhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2cos2hþ b2sin2h

p ; ðA:4Þ

where r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2cos2Uþ b2sin2U

p
and tanU* = (b/a)

tanU. Applying the Jacobi–Anger identity

exp½ix cos h� ¼
Xþ1

n¼�1
JnðxÞ exp½inðhþ p=2Þ�; ðA:5Þ

Eq. (A.4) can then be expressed as

F ðR;U; ZÞ ¼
Xþ1

n¼�1
Jnð2pRr�Þ exp in U� þ p

2

� �h i
gðn; ZÞ;

ðA:6Þ

where

gðn; ZÞ ¼
Z

exp½2piZzðhÞ � inh�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2cos2hþ b2sin2h

p dh: ðA:7Þ
Considering the distribution of carbon atoms on the

helices and the geometrical relationships (rotational

and translational shifts (/j,zj)) between all the carbon

helices in the elliptical nanotube, the scattering ampli-

tude can finally be expressed as

F ðR;U; lÞ ¼
X
j

X
n;m

f gðn; lÞJnð2pRr�Þ

� exp½inðU� þ p=2Þ� exp½�in/j þ 2pilzj=c�;
ðA:8Þ

where f is the atomic scattering amplitude for electrons
and c is the structuralperiodicityof the elliptical nanotube.

This scattering amplitude is subject to the selection rule

l=c ¼ n=C þ m=D; ðA:9Þ
where D is the axial distance between neighboring atoms

on a continuous helix [20].

For a cylindrical carbon nanotube, U* = U, h = /,
and r* = r0 with r0 being the radius of the carbon nano-

tube, and g(n,l) becomes a constant.
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