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Abstract

The properties of a carbon nanotube are dependent on its atomic structure. The atomic structure
of a carbon nanotube can be defined by specifying its chiral indices, (u, v), that specify its
perimeter vector (chiral vector), with which the diameter and helicity are also determined.
The fine electron beam available in a modern transmission electron microscope (TEM) offers
a unique probe to reveal the atomic structure of individual nanotubes.

This review covers two aspects related to the use of the electron probe in the TEM for
the study of carbon nanotubes: (a) to understand the electron diffraction phenomena for inter-
pretation of the electron diffraction patterns of carbon nanotubes and (b) to obtain the chiral
indices, (u, v), of the carbon nanotubes from the electron diffraction patterns.

For a nanotube of a given structure, the electron scattering amplitude from the carbon
nanotube is first described analytically in closed form using the helical diffraction theory.
From a known structure as given by the chiral indices (u, v), its electron diffraction pattern
can be calculated and understood.

The reverse problem, i.e. assignment of the chiral indices from an electron diffraction
pattern of a carbon nanotube, is approached from the relationship between the electron
scattering intensity distribution and the chiral indices (u, v). We show that electron diffraction
patterns can provide an accurate and unambiguous assignment of the chiral indices of carbon
nanotubes. The chiral indices (u, v) can be read indiscriminately with a high accuracy from
the intensity distribution on the principal layer lines in an electron diffraction pattern.

The symmetry properties of electron diffraction from carbon nanotubes and the electron
diffraction from deformed carbon nanotubes are also discussed in detail. It is shown that 2mm
symmetry is always preserved for single-walled carbon nanotubes, but it can break down for
multiwalled carbon nanotubes under some special circumstances.

Finally, determination of the handedness of carbon nanotubes using electron diffraction
is reviewed and discussed with both theoretical analysis and experimental examples.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Diamond and graphite have long been known as the only allotropes of crystalline carbon and
their atomic structures were determined soon after the x-ray diffraction method was developed
[1–3]. Carbon nanotubes were first discovered in 1991 in the cathodic deposits when two
graphite electrodes were dc arc-discharged [4] in an apparatus developed to produce fine
particles [5] and fullerenes [6, 7]. The ultimate form of carbon nanotubes is single-walled
carbon nanotubes [8,9], which can be constructed by rolling up a rectangular cut of graphene
about a chosen axis to form a seamless cylinder of diameter on the nanometre scale.

In addition to the arc-discharge technique to produce carbon nanotubes, both multiwalled
and single-walled carbon nanotubes [10–13], other production techniques have been developed
and refined to produce carbon nanotubes, including laser evaporation [14–16], pyrolytic
chemical vapour deposition (CVD) involving various catalysts and hydrothermal and
solvothermal methods [17–37] and plasma-enhanced CVD [38–40]. At present, these three
methods (arc-discharge, CVD and laser evaporation) are the major production techniques to
make large quantities of carbon nanotubes, both single-walled and multiwalled.

The helical structure of carbon nanotubes was recognized when the first carbon nanotubes
were observed in a transmission electron microscope (TEM) using electron diffraction [4]. The
diameter and helicity define the atomic structure of a carbon nanotube, which in turn determines
the properties of the nanotube. For example, a carbon nanotube can be either metallic or
semiconducting, an extraordinary property of carbon nanotubes that was soon recognized
[41–46] and has excited a great many envisaged proposals on the potential nanoelectronics
and photonics applications based on this tuneable electronic structure [47–53].

Apart from the unique one-dimensional structure of carbon nanotubes, their extraordinary
properties are the major reasons for the explosion in research activity that has been seen over
the past decade and a half since carbon nanotubes were discovered. Based on the strongest
carbon–carbon covalent bond, carbon nanotubes have shown the highest Young’s modulus
approaching the theoretical value of graphite, i.e. about 2 TPa [54–63].

There have also been noticeable practical applications of carbon nanotubes. Due to their
small diameter and large aspect ratio, carbon nanotubes have been demonstrated to be excellent
electric field-induced emitters of electrons [64–70]. When thin films are made, a large emission
current has been obtained, and devices for generating x-rays have been developed [69–72].
Carbon nanotube cathodes have also been fabricated to produce flat panel displays [73]. When
a single carbon nanotube is used, it can serve as a point electron source that offers higher
brightness and lower energy spread. These qualities make carbon nanotubes promising point
emitters for electron microscope filaments [74–79]. In addition, carbon nanotubes have also
been explored as high-aspect-ratio atomic force microscope tips [80–83].

The atomic structure of carbon nanotubes has been at the centre stage of research ever since
carbon nanotubes were discovered. Transmission electron microscopy (TEM) has been the
most powerful and most popular technique for characterizing the morphology and structure
of carbon nanotubes. In addition to the TEM method, other analytical techniques, such as
Raman spectroscopy [84,85], optical absorption spectroscopy [86,87] and scanning tunnelling
microscopy [88–92], have also been used extensively in an attempt to elucidate the atomic
structure of carbon nanotubes. However, due to various limitations, there are still formidable
difficulties in determining the atomic structure of carbon nanotubes accurately with these
techniques.

Electron diffraction was the first technique employed to identify the helical structure
of carbon nanotubes and it has continued to play an important role in the structural studies
of carbon nanotubes. Based on the helical theory developed for the study of α-helix and
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the helical DNA molecules [93–100], the kinematical diffraction theory for the scattering
of electrons or x-rays from carbon nanotubes was formulated by Qin in 1994 [101] and
subsequently by Lucas et al in 1996 [102, 103]. Electron diffraction from carbon nanotubes
was also discussed using mostly geometric illustrations [104–108] that has been well covered
in the review paper by Amelinckx et al [109]. On the other hand, electron diffraction has
also been explored for the possibility of solving the atomic structure of carbon nanotubes, in
particular, to obtain the helicity of carbon nanotubes [110–142]. Two approaches have been
developed, one uses a correction factor to obtain the chiral angle from the electron diffraction
pattern [113] and the other uses the ratio of the layer lines measured in the electron diffraction
patterns [120]. The atomic structure of a double-walled carbon nanotube was also obtained
by electron crystallographic method using phase retrieval [121]. A one-step direct method
has been developed recently [122] and has been applied to determine the atomic structure of
a large number of carbon nanotubes, both single-walled and multiwalled [123, 124]. Electron
diffraction is by far the most powerful technique to study the atomic structure of carbon
nanotubes with high accuracy as can be seen in the literature [125–142].

In this review, we will first define the structural parameters of carbon nanotubes (section 2).
In section 3, the kinematical diffraction theory is described in detail using analytic expressions
in terms of their structural parameters, i.e. the chiral indices (u, v) for both single-walled
and multiwalled carbon nanotubes. Electron scattering intensities are expressed analytically
using these structural parameters and numerical calculations are given together with illustrated
experimental data. To answer the crucial question—determination of the atomic structure
of carbon nanotubes by electron diffraction, section 4 details a one-step systematic method
that allows the assignment of the chiral indices of carbon nanotubes from a single electron
diffraction pattern with high precision. In section 5, the symmetry properties of electron
diffraction from carbon nanotubes, both single-walled and multiwalled, are discussed. In
section 6, the electron diffraction from deformed carbon nanotubes is considered, including
elliptical nanotubes, twisted nanotubes and carbon nanotube ropes. The determination of
the handedness of carbon nanotubes using electron diffraction is reviewed and discussed in
section 7.

2. Structure description of carbon nanotubes

The solid state physics convention is chosen in this paper to describe the graphene lattice
structure, where the basis vectors of the graphene net, �a1 and �a2 (a1 = a2 = a0 = 0.246 nm),
are separated with an inter-angle of 60◦, as schematically shown in figure 1(a). The planar
net is also referred to as the radial projection of the nanotube. With the crystallographic basis
vectors defined in the real space, the basis vectors, ⇀a1

∗
and ⇀a2

∗
, in the reciprocal space are

�a∗
1 = 2

3a2
0

(2�a1 − �a2),

�a∗
2 = 2

3a2
0

(−�a1 + 2�a2).

(1)

On the graphene lattice, a single-walled carbon nanotube can be conveniently described
by a lattice vector (u, v) that specifies its perimeter, as shown in figure 1(a) for the lattice vector
(7,1) and these two integer indices (u, v) are referred to as the chiral indices of the nanotube.
For a carbon nanotube of given chiral indices (u, v), its perimeter vector is

⇀
A= (u, v) = u ⇀a1 +v ⇀a2, (2)
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(a)

(b)

Figure 1. (a) Schematic structure of graphene with basis vectors ⇀a1 and ⇀a2. The shadowed rectangle
is the radial projection of carbon nanotube (7,1) with perimeter ⇀

A and helical angle α. (b) Single-
walled carbon nanotube (7,1) is formed from the cut by rolling it up about axis ⇀

A perpendicular to
the perimeter vector ⇀

A.

with magnitude A = a0(u
2 + v2 + uv)1/2, and the diameter of the nanotube is d = A/π . Once

the chiral indices (u, v) are defined, the tubule axis, (uc, vc), perpendicular to the chiral vector
⇀
A, can be calculated by applying the orthogonality relationship between the tubule perimeter
and the tubule axis

(u, v) · (uc, vc) = uuc + vvc +
uvc + uvc

2
= 0, (3)

which yields

uc

vc

= −u + 2v

2u + v
. (4)

The indices of the tubule axis (uc, vc) should be chosen as the pair which has no common
factors other than 1. Denoting M as the greatest common integer divisor of (2u + v) and
(u + 2v), the axial lattice vector (uc, vc) can be written as

uc = −u + 2v

M
,

vc = 2u + v

M
,

(5)

and the periodicity c of carbon nanotube (u, v) can be expressed as [143]

c = a0

√
u2

c + v2
c + ucvc

=
√

3a0

M

√
u2 + v2 + uv =

√
3A

M
. (6)

When a rectangle with sides A and c is cut out of the graphene and is then rolled up about
an axis perpendicular to the perimeter A, a cylindrical nanotube (7,1) is formed as depicted in
figure 1(b). The helical angle α, defined as the angle between the perimeter vector

⇀
A = (u, v)
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and the basis vector ⇀a1, illustrated in figure 1(a), of the nanotube (u, v) is

α = cos−1

(
2u + v

2(u2 + v2 + uv)1/2

)

= sin−1

( √
3v

2
√

u2 + v2 + uv

)

= tan−1

( √
3v

2u + v

)
. (7)

The atomic positions can be expressed in two convenient ways. One is to use the Cartesian
coordinates (xj , zj ) in the radial projection, where the nanotube is projected onto a rectangle
with sides A and c as described above. An alternative is to express the atomic positions in
cylindrical coordinates (φj , zj ) and the atomic structure of a single-walled carbon nanotube
can be described by pairs of parallel atomic helices. However, it should be noted that there
are three equivalent helices in a carbon nanotube. They are parallel to the crystallographic
directions ⇀a1, ⇀a2 and ⇀a3 = ⇀a2 − ⇀a1, respectively. Each helix consists of a pair of atomic helices,
displaced by a respective vector. In a unit cell, there are v helix pairs parallel to ⇀a1 or u helix
pairs parallel to ⇀a2 or u + v helix pairs parallel to ⇀a3 = ⇀a2 − ⇀a1.

With respect to a chosen carbon atom located at the origin φ
(0)
0 = 0 and z

(0)
0 = 0, the

atomic positions on the primary helix parallel to ⇀a1 are{
φ

(1,0)
j = −2πja0 cos(α)/A,

z
(1,0)
j = ja0 sin(α),

j = 0, 1, 2, . . . , u + v (8)

and the secondary helix is{
φ

(1,1)
j = φ

(1,0)
j + �φ

(1)
0 ,

z
(1,1)
j = z

(1,0)
j + �z

(1)
0 ,

j = 0, 1, 2, . . . , u + v, (9)

where

�φ
(1)
0 = 2πa0√

3A
cos(30◦ + α),

�z
(1)
0 = − a0√

3
sin(30◦ + α)

. (10)

The atomic positions on the primary helix (left-handed) parallel to ⇀a2 are{
φ

(2,0)
j = 2πja0 cos(60◦ − α)/A,

z
(2,0)
j = −ja0 sin(60◦ − α),

j = 0, 1, 2, . . . , 2u − v (11)

and the secondary helix is


φ
(2,1)
j = φ

(2,0)
j +

2πa0√
3A

sin(α),

z
(2,1)
j = z

(2,0)
j − a0√

3
cos(α),

j = 0, 1, 2, . . . , 2u − v. (12)

The atomic positions on the primary helix parallel to ⇀a3=⇀a2 − ⇀a1 are{
φ

(3,0)
j = −2πja0 cos(60◦ + α)/A,

z
(3,0)
j = ja0 sin(60◦ + α)/A,

j = 0, 1, 2, . . . , 2u + v (13)
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(a) (b)

Figure 2. (a) Carbon nanotube (18,0) (diameter 1.409 nm and helicity 0◦) of zigzag structure;
(b) nanotube (10,10) (diameter 1.36 nm and helicity 30◦) of armchair structure.

and the secondary helix is


φ
(3,1)
j = φ

(3,0)
j +

2πja0√
3A

sin(α),

z
(3,1)
j = z

(3,0)
j +

a0√
3

cos(α),

j = 0, 1, 2, . . . , 2u + v. (14)

Since the graphene lattice has hexagonal rotational symmetry, the non-degenerate range
for the helical angle is 60◦, which can be confined to the range of [0◦,60◦]. The values in
[30◦,60◦] can be assigned to the left-handed tubules, while the values [0◦,30◦] are for the
right-handed tubules. Among the three helices, two of them have the same handedness and
the third has opposite handedness. Therefore, though the structure of carbon nanotubes is
enantiomorphic, the choice of absolute handedness is arbitrary.

When the handedness of a tubule is ignored, the helical angle can be limited to [0◦,30◦].
Within this range, the chiral indices can be limited to the following values:

u > 0,

u � v � 0.
(15)

The rotational symmetry of a nanotube can be recognized by examining its chiral indices.
For a tubule of indices (u, v), it should have m-fold rotational symmetry where m is the greatest
common divisor of u and v. When v = 0, the nanotube possesses u-fold rotational symmetry,
and it does not have a two-fold rotational symmetry when u is an odd number. On the other
hand, when a two-fold axis is present, the nanotube is also centrosymmetric.

There are two special cases that deserve special attention, which have non-helical
structures. One is the so-called zigzag structure, which has chiral indices of the form (u, 0)

having helical angle 0◦ as shown in figure 2(a); the other is the armchair structure, which
has chiral indices of (u, u) having helical angle 30◦, which is shown in figure 2(b). In the
zigzag structure, where (u, v) = (u, 0), its tubule axis is (uc, vc) = (−1, 2). In the armchair
structure, where (u, v) = (u, u), its tubule axis is (uc, vc) = (−1, 1).



2768 L-C Qin

It should be noted that, though the choice of origin is arbitrary, the relative orientation
between the real space lattice and the corresponding reciprocal space lattice is fixed. It is
often found in the literature that the crystallographic convention is used where the two basis
vectors, �a′

1, �a′
2, are separated with an inter-angle of 120◦. Though the physical results should

be independent of the choice of basis vectors, the chiral indices usually appear to be different.
The two sets of basis vectors are related by the following equations{�a′

1 = �a1,

⇀a′
2 = −�a1 + �a2,

(16)

and {�a1 = �a′
1,

�a2 = �a′
1 + �a′

2.
(17)

The relationships between the chiral indices, (u, v) and (u′, v′), which determine the perimeter
vector of the nanotube, �A = u�a1 + v�a2 = u′ �a′

1 + v′ �a′
2, on the radial projection net are{

u = u′ − v′,

v = v′,
(18)

and {
u′ = u + v,

v′ = v.
(19)

3. Electron diffraction from single-walled carbon nanotubes

3.1. Atomic scattering amplitude

When fast electrons are incident on an atom, the atomic scattering amplitude for electrons is
well described by the first Born approximation [144–146]

f (
⇀
q ) = 2πme

h2

∫
υ(

⇀
r ) exp(2π

⇀
q · ⇀

r ) d
⇀
r , (20)

where υ(
⇀
r ) is the coulombic potential of the scattering atom, –e is the electric charge of

electron, m is the relativistic mass of electron, h is the Planck constant and
⇀
q is the scattering

vector with magnitude q defined as

q = 2 sin(�/2)

λ
, (21)

in which � is the total scattering angle and λ is the wave length of the incident electron wave.
The numerical calculation of the atomic scattering amplitudes has been well developed with
tabulated numerical values available [147–149].

It is also worth mentioning that equation (20) is the Fourier transform of the scattering
potential of the atom.

3.2. Electron diffraction from a continuous helix

The electron scattering amplitude can be expressed by the structure factor

F(
⇀
q ) =

∫
V (

⇀
r ) exp(2π i

⇀
q · ⇀

r ) d
⇀
r , (22)
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(a) (b)

Figure 3. (a) Schematic of a continuous helix of pitch length C. (b) Corresponding electron
diffraction pattern of the continuous helix. It consists of a set of layer lines separated by 1/C and
the intensity on layer line l is proportional to |Jl(X)|2.

where V (�r) = ((2πme)/h2)U(
⇀
r ) is the modified scattering potential with U(

⇀
r ) being the

coulombic potential of the scattering object, and the physically measurable diffraction intensity
distribution I (

⇀
q ) in the reciprocal space is

I (
⇀
q ) =

∣∣∣F(
⇀
q )

∣∣∣2 . (23)

For the general case of kinematical diffraction, where Friedel’s law holds, the diffraction
intensity distribution is always centro-symmetric regardless of the symmetry of the scattering
potential, i.e.

I (− ⇀
q ) = I (

⇀
q ). (24)

For a cylindrical object such as a nanotube, it is more convenient to express the scattering
amplitude in polar coordinates (R, 	, l) (cf appendix)

F(R, 	, l) = 1

c

∞∑
n=1

exp
[
in
(
	 +

π

2

)]

×
∫ c

0

∫ 2π

0

∫ ∞

0
V (r, φ, z)Jn(2πrR) exp

[
i

(
−nφ +

2πlz

c

)
r dr dφ dz, (25)

where Jn is the Bessel function of order n and c is the periodicity of the tubular object along
its unique axis (z-direction).

As an example to illustrate the scattering of helical structures, figure 3(a) shows a
continuous right-handed helix, where the scattering potential is expressed by

V (r, φ, z) = V0δ(r − r0)δ

(
2πz

C
− φ

)
, (26)
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in which r0 is the radius of the helix and C the pitch length. Using this potential, the scattering
amplitude (25) becomes

F(R, 	, l) = r0V0Jl(2πr0R) exp
[
i
(
	 +

π

2

)
l
]
, (27)

and the corresponding scattering intensity distribution is

I (R, 	, l) = |F(R, 	, l)|2 = r2
0 V 2

0 [Jl(2πr0R)]2, (28)

which is plotted in figure 3(b).
There are two distinctive characteristics in the diffraction pattern of a helix that deserve

special mention. One is that the intensity falls only on discrete lines (layer lines) indexed by
integer l; the other is that the intensity on a layer line l is proportional to the square of Bessel
function of order l.

When there are two helices related by a twofold rotation axis, i.e.

V (r, φ, z) = V0δ(r − r0)

[
δ

(
2πz

C
− φ

)
+ δ

(
2πz

C
− φ + π

)]
, (29)

the scattering amplitude then becomes

F(R, 	, l) = r0V0Jl(2πr0R)

{
exp

[
i
(
	 +

π

2

)
l
]

+ exp
[
i
(
	 − π

2

)
l
]}

= r0V0Jl(2πr0R)[1 + exp(−iπl)] exp
[
i
(
	 +

π

2

)
l
]
. (30)

The intensity distribution is

I (R, 	, l) = |F(R, 	, l)|2 =
{

4r2
0 V 2

0 [Jl(2πr0R)]2, l = even,

0, l = odd.
(31)

The layer lines of odd index l are in extinction.
When there is an N -fold rotation axis, the layer lines will be in extinction except those of

layer line index equal to multiples of N .

3.3. Electron diffraction from a nanotube

In a single-walled carbon nanotube of radius r0, where the carbon atoms are located at discrete
positions on a helix of radius r0, as schematically shown in figure 4(a), the corresponding
structure factor takes the following form (cf appendix)

F(R, 	, l) =
∑

n

exp
[
in
(
	 +

π

2

)]
Jn(2πr0R)

∑
j

fj exp

[
i

(
−nφj +

2πlzj

c

)]
, (32)

where the summation for j is done over all atoms in an asymmetric cell and n over all integers
as allowed by the selection rule discussed in section 3.4. This is a generic formula that is valid
for all forms of nanotubes.

The structure factor (32) can also be rewritten as

F(R, 	, l) =
∑

n

Bn(R, 	)Tnl, (33)

where

Bn(R, 	) = exp
[
in
(
	 +

π

2

)]
Jn(2πr0R) (34)
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(a) (b)

Figure 4. (a) Schematic of a discontinuous helix where discrete groups of scatterers (atoms) are
located on a helix of pitch length C. c and � are the periodicity of the structure and the separation
between the neighbouring molecular groups in the axial direction, respectively. (b) Corresponding
Fraunhofer diffraction pattern.

and

Tnl =
∑

j

fj exp

[
2π i

(
nxj

A
+

lzj

c

)]
, (35)

where A is the perimeter of the nanotube and (xj , zj ) are the atomic coordinates in radial
projection in the horizontal and axial directions, respectively. Herewith the diffraction effects
from a cylindrical nanotube are more clearly seen by looking at the physical meaning of the
two parts in equation (33): (a) the structure factor in radial projection described by Tnl and (b)
the modifying function Bn(R, 	) taking into account the effects of cylindrical curvature. For
the case of single-walled carbon nanotubes, Tnl gives rise to the regular hexagonal diffraction
pattern from a graphene. As shown by equation (33), the modifying Bessel function alters the
diffraction intensity peak positions in the diffraction pattern, and the shifts are determined by
the order of the operating Bessel functions.

3.4. Selection rule

When there is a discrete distribution of scatterers located on a helix, the discrete scattering
potential can be regarded as the product of the continuous helix and a set of equally spaced
planes of spacing �, as illustrated in figure 4(a). The Fraunhofer diffraction can then be
calculated by the convolution of the structure factor of the continuous helix and that of the
equally spaced planes. Since the latter is just a row of points located along the tubule axis
with equal spacing 1/�, the compounded result is a set of diffraction patterns of the single
continuous helix with origins at each of the points along the tubule axis, as schematically
depicted in figure 4(b). If we designate c as the new structural periodicity along the tubule
axis of a single helix, C as the pitch length of the continuous helix (c � C), then the allowed
reflection on layer line l should satisfy

l

c
= n

C
+

m

�
, (36)
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where m is an integer. For a given layer line l, the allowed orders of Bessel functions Jn(2πroR)

are determined by combinations of n and all possible integers m that satisfy equation (36).
The selection rule (36) can also be expressed equivalently as

l = nt + mp, (37)

where t = c/C gives the number of turns per unit periodicity and p = c/� gives the number
of scattering units per complete periodicity of the helix.

On the other hand, from the geometry in radial projection, we have

C = A tan(α) = a0
v
√

3(u2 + v2 + uv)

2u + v
,

� = a0 sin(α) = a0
3v

2
√

3(u2 + v2 + uv)
,

(38)

in terms of the chiral indices (u, v), the parameters t and p are

t = c

C
= 2u + v

Mv
, (39)

where M is the greatest common divisor of (2u + v) and (u + 2v), and

p = c

�
= 2(u2 + v2 + uv)

Mv
. (40)

The selection rule for nanotube (u, v) can therefore also be expressed as

l = n
2u + v

Mv
+ m

2(u2 + v2 + uv)

Mv
. (41)

When the nanotube has rotational symmetry, the same selection rule applies if c is defined
as the periodicity related to a specific helix. The additional rotational symmetry will lead
to extinction in layer lines. For a nanotube of N -fold rotational symmetry, only l = kN

are allowed layer lines. Equivalently, this can be translated into additional constraints on the
selection rule. If we use the structural periodicity, then the new periodicity will be shortened
by N times to become c/N , and the selection rule (equation (36)) l = nt + mp will limit the
values of n and m to be multiples of N , while l takes all possible integers.

3.5. Structure factor of a carbon nanotube

To calculate the scattering amplitude for a single-walled carbon nanotube (u, v), it is more
convenient to express its atomic structure by the v pairs of atomic helices positioned at
(x

(1,0)
j , z

(1,0)
j ) and (x

(1,1)
j , z

(1,1)
j ) where{

x
(1,0)
j = −ja0 cos(30◦ − α),

z
(1,0)
j = ja0 sin(30◦ − α),

j = 0, 1, 2, . . . , v − 1 (42)

and 


x
(1,1)
j = x

(1,0)
j +

a0√
3

cos(30◦ + α),

z
(1,1)
j = z

(1,0)
j − a0√

3
sin(30◦ + α),

j = 0, 1, 2, . . . , v − 1. (43)

The scattering amplitude from the v pairs of helices is therefore

Tnl =
atoms∑

k

f exp

[
2π i

(
nxk

A
+

lzk

c

)]
= f

v−1∑
j=0

{
exp

[
2π i

(
nx

(1,0)
j

A
+

lz
(1,0)
j

c

)]}

×
{

1 + exp

[
2π ia0√

3

(
n cos(30◦ + α)

A
− l sin(30◦ + α)

c

)]}
. (44)
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Inserting 


cos(30◦ − α) =
√

3(u + v)

2
√

u2 + v2 + uv
,

sin(30◦ − α) = u − v

2
√

u2 + v2 + uv
,

(45a)




cos(30◦ + α) =
√

3u

2
√

u2 + v2 + uv
,

sin(30◦ + α) = 2u + v

2
√

u2 + v2 + uv
,

(45b)

and the selection rule

l

c
= n

C
+

m

�
= 1

a0

(
n√

u2 + v2 + uv

2u + v√
3v

+ m
2
√

u2 + v2 + uv√
3v

)
(46)

into equation (44), we then have

Tnl = f

v−1∑
j=0

{
exp

[
2π i

(
nx

(1,0)
j

A
+

lz
(1,0)
j

c

)]}{
1 + exp

[
2π i

(
−n + (u + 2v)m

3v

)]}

= f

v−1∑
j=0

exp

[
2π ij

n + (u + v)m

v

]{
1 + exp

[
2π i

(
−n + (u + 2v)m

3v

)]}

= f
1 − exp{2π i[n + (u + v)m]}

1 − exp [2π i[n + (u + v)m)/v]

{
1 + exp

[
2π i

(
−n + (u + 2v)m

3v

)]}

=




vf

{
1 + exp

[
2π i

(
−n + (u + 2v)m

3v

)]}
, when [n + (u + v)m]/v = N (integer),

0, otherwise.

(47)

The structure factor can then be expressed as

Fuv(R, 	, l) =
∑
n,m

f χuv(n, m)γuv(n, m)Jn(πdR) exp
[
in
(
	 +

π

2

)]
, (48)

where

χuv(n, m) = 1 + exp

[
2π i

(
−n + (u + 2v)m

3v

)]
(49)

and

γuv(n, m) =
{

v, when[n + (u + v)m]/v = N (integer),

0, otherwise,
(50)

in which n, m, and l are all integers that are governed by the selection rule for carbon nanotube
(u, v) stipulated by equation (36):

l = (2u + v)n + 2(u2 + v2 + uv)m

Mv
, (51)
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with M being the maximum common divisor of integers (u + 2v) and (2u + v). Equations (50)
and (51) put additional constraints on the values of n, the order of Bessel functions contributing
to the layer line l.

Visually, it is the helices which have the smallest angle with respect to the tubule axis that
appear as the ‘helices’. For this reason, we can also choose the helices parallel to ⇀a2 in the
calculation of the structure factor. Inserting the atomic positions for a carbon nanotube (u, v),
the scattering amplitude (33) becomes

Fuv(R, 	, l) =
∑
n,m

f χuv(n, m)γuv(n, m)Jn(πdR) exp
[
in
(
	 +

π

2

)]
, (52)

where

χuv(n, m) = 1 + exp

[
−2π i

n + (2u + v)m

3u

]
(53)

and

γuv(n, m) = 1 − exp[2π i(n + vm)]

1 − exp[2π i(n + vm)/u]
=
{

u, if(n + vm)/u = N,

0, otherwise,
(54)

in which n, m, and l are all integers that are governed by the same selection rule for carbon
nanotube (u, v) stipulated by equation (36):

l = (u + 2v)n + 2(u2 + v2 + uv)m

Mu
, (55)

with M being the maximum common divisor of integers (u + 2v) and (2u + v). Equation (55)
is equivalent to equation (51).

When the helices are counted in the direction of ⇀a3=⇀a2 − ⇀a1, then

Fuv(R, 	, l) =
∑
n,m

f χuv(n, m)γuv(n, m)Jn(πdR) exp
[
in
(
	 +

π

2

)]
, (56)

where

χuv(n, m) = 1 + exp

[
2π i

n − (u + 2v)m

3(u + v)

]
(57)

and

γuv(n, m) = 1 − exp[2π i(n − vm)]

1 − exp[2π i(n − vm)/(u + v)]
=
{

u + v, if (n − vm)/(u + v) = N,

0, otherwise
(58)

and the selection rule for the same carbon nanotube (u, v) appears as

l = (u − v)n + 2(u2 + v2 + uv)m

M(u + v)
, (59)

which is equivalent to equations (51) and (55).
The above equations are also valid for x-rays, when V (

⇀
r ) and f are replaced by the

electron charge density function ρ(
⇀
r ) and the atomic scattering amplitude for x-rays, f (x),

respectively.
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Figure 5. Geometric relationship between the apparent twist angle, θ , measured on an electron
diffraction pattern of a carbon nanotube and its true helical angle, α, which usually appears smaller
than θ . The cylindrical curvature causes an enlargement of the twist angle, θ .

Figure 6. Relationship between the radial projection of a helix and its helical angle for calculating
the cylindrical correction factor. (a) A continuous helix of radius r0 and pitch length C.
(b) Corresponding electron diffraction pattern of the helix. θl refers to the semi-angle between
the first scattering maximum and the axial direction measured on layer line l. (c) Radial projection
of the helix.

3.6. Cylindrical correction

As can be seen from equation (33), the geometry of the electron diffraction pattern from
a cylindrical nanotube will be different from that of the planar radial projection due to the
presence of Bessel functions. Due to the cylindrical curvature and the small diameter of
the nanotubes, the graphene reflections are elongated perpendicular to the axial direction to
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Figure 7. Chart of cylindrical correction factors for various orders of reflections. The correction
factor can be as large as 80% for n = 1 [113].

become streaks. When measurement is made, as schematically illustrated in figure 5, the twist
angle, θ , between the graphene (010) reflections is much larger than the true helical angle,
α, of the nanotube. In order to understand the effects on the geometry of electron diffraction
patterns from a cylindrical nanotube, for the sake of simplicity but without loss of generality,
it is assumed here that there is only one continuous helix as the scattering object as shown in
figure 6(a). For this case, as described in section 3.2, the scattering intensities on layer line n

are proportional to |Jn(2πr0R)|2 which is schematically displayed in figure 6(b). In the radial
projection, schematically shown in figure 6(c), the helix is the diagonal of a rectangle with
width A and height C. The relationship between the apparent twist angle θ measured on the
experimental diffraction pattern as shown in figure 6(b) and the true helical angle α can be
derived [110]:

tan(θ) = Rn

n/C
. (60)

Noticing (cf figure 6(c))

Rn

n/c
= 2πr0Rn

C

2πr0n

= un

n
tan(α), (61)

we can therefore obtain the relationship between the experimental parameter θ and the true
helicity α

tan(θ) = un

n
tan(α), (62)

where un is the value of u at which the Bessel function Jn(u) assumes its first maximum for
n �= 0. The correction factor un/n is plotted for various low values of n in figure 7. For
instance, the shift for n = 1 is about 80%, and for n = 2 the shift is about 50%. The large
magnitude of the correction factor illustrates that the cylindrical correction cannot be ignored
when accurate helicity is sought.
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(a)

(b)

Figure 8. (a) Schematic structure of carbon nanotube (16,2) and (b) its electron diffraction pattern
calculated using the kinematical formulae.

3.7. Calculation of electron diffraction patterns

The electron diffraction patterns can be calculated numerically using the analytic equations
and the selection rule described in section 3.5. For example, the carbon nanotube of chiral
indices (16,2), shown in figure 8(a), has a twofold axis and its axial periodicity is (−20, 34)
(along a single helix line). The other structural parameters can also be calculated:

A = 4.19 nm, d = 1.33 nm, c = 7.25 nm,

C = 0.426 nm, α = 5.8◦, t = 17,

p = 292, � = 0.0248 nm.
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Applying the selection rule (36) we obtain

� = 0, n = 0, m = 0,

� = 2, n = 86, m = −5,

� = 4, n = −120, m = 7,

� = 6, n = −34, m = 2,

� = 8, n = 52, m = −3,

� = 10, n = 138, m = −8,

� = 12, n = 68, m = −4,

. . .

� = 34, n = 2, m = 0,

� = 68, n = 4, m = 0,

� = 102, n = 6, m = 0,

. . .

The calculated electron diffraction pattern is shown in figure 8(b).
Though a rigorous calculation should include all the terms allowed by the selection rule

in the summation given by equation (33), usually only one term dominates the scattering
amplitude on each layer line as shown in section 4. This will greatly simplify the numerical
simulations as well as the interpretation of the electron diffraction patterns of carbon nanotubes.

3.8. Electron diffraction from multiwalled carbon nanotubes

An ideal multiwalled carbon nanotube consists of multiple concentric shells with inter-tubular
distances similar to the inter-planar spacings of graphite (∼0.335 nm). The structure factor
for a multiwalled carbon nanotube of N shells can be expressed as the coherent sum of the
scattering amplitudes from all individual shells in the multiwalled carbon nanotube [150]:

F(R, 	, Z) =
N∑

j=1

f δ

(
Z − lj

cj

)∑
n,m

χj (n, m)γj (n, m)Jn(πdjR)

× exp
[
in
(
	 +

π

2

)]
exp(iϕj ), (63)

where j denotes the j th nanotube (uj , vj ) of axial periodicity cj and diameter dj , ϕj denotes
the phase shift for the j th shell relative to the reference shell in real space and

χj (n, m) = 1 + exp

{
−2π i

n + (uj + 2vj )m

3vj

}
, (64)

γj (n, m) = 1 − exp[−2π i(n + (uj + vj )m)]

1 − exp
[
−2π i (uj +vj )m

vj

] =



vj , if
n + (uj + vj )m

vj

= integer,

0, otherwise
(65)
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Figure 9. Relationship between the principal graphene reflections (positioned at the six apices of
the regular hexagons) and the principal layer line reflections l1, l2 and l3 of a carbon nanotube. D1
and D2 are the respective layer line spacings.

in which n, m and lj are all integers governed by the selection rule for the j th shell of the
nanotube:

lj = (2uj + vj )n + 2(u2
j + v2

j + ujvj )m

Mjvj

, (66)

with Mj being the maximum common divisor of (uj + 2vj ) and (2uj + vj ).
The electron diffraction intensity distribution is I (R, 	, Z) = |F(R, 	, Z)|2.
As a special case, for electron diffraction from single-walled carbon nanotubes, the

summation over j in equation (63) disappears (N = 1) and so does the subscript j in
equations (64)–(66).

4. Determination of chiral indices of carbon nanotubes

4.1. Principal layer lines

In order to determine the atomic structure of a carbon nanotube, it is necessary to determine
the chiral indices (u, v) that in turn determine the diameter and helicity of the nanotube.
Traditionally, using transmission electron microscopy, the diameter has been measured directly
from high-resolution electron micrographs and the helicity is deduced from the electron
diffraction patterns. As discussed in section 3, the electron diffraction pattern of a single-
walled carbon nanotube has the primary graphene reflections as the strongest intensity peaks.
These reflections form three pairs of layer lines, labelled as l1 (formed by the graphene (010)
reflections), l2 (formed by the graphene (1̄00) reflections) and l3 (formed by the graphene (110)
reflections) with layer line spacings with respect to the equatorial layer line denoted by D1, D2

and D3, and they are referred to as the principal layer lines and are schematically illustrated in
figure 9. It is experimentally most convenient to use these principal layer lines to characterize
the carbon nanotube.
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4.2. Direct method

It is important to note that on each layer line, though the scattering amplitude is described by a
summation of all Bessel functions that are allowed by the selection rule, there is usually only
one order of Bessel function that dominates the intensity distribution on this particular layer
line. All the others contribute negligibly to the layer line intensity. We can deduce the above
conclusion from the selection rule. Under the constraints governed by the selection rule, all
the possible values of n for one chosen layer line l can be expressed as follows [151]:

n = n0 +
2P(u2 + v2 + uv)

M
, (67)

where P are positive integers that make n also an integer and n0 defines the smallest non-
negative integer for the chosen layer line l. Because (u2+v2+uv)/M is always an integer [152],
2P(u2 + v2 + uv)/M is usually a very large number. Since the magnitude of Bessel functions
decreases significantly with the increase of their orders, the diffraction intensity on a particular
layer line is essentially dominated by a single Bessel function of the lowest order n0. For
example, for single-walled carbon nanotube (14,9) (diameter d = 1.572 nm and helicity
α = 22.84◦, respectively) for the principal layer line l1 (l = 37), n0 = 9 and the next
contributing Bessel function is n = 797. The magnitude of the first peak for |J9(x)|2 is
more than 20 times of that for |J797(x)|2. Furthermore, the first peak position on the specified
layer line for J797(x) is 75 times larger than that for J9(x). Therefore, the diffraction intensity
distribution on the layer line l = 37 for single-walled carbon nanotube (14,9) is only modulated
by |J9(x)|2 within the range of collection where significant experimental data are present in
the reciprocal space.

The order of the single operating Bessel function for a given carbon nanotube (u, v)

can be obtained by considering the crystallographic indices of the graphene reflections using
the extended cell of the nanotube in radial projection which is related to the index n. In
the Fraunhofer diffraction pattern of the graphene lattice, the allowed Bragg reflections are
described by

⇀
g= h⇀a1

∗
+k⇀a2

∗
. (68)

For a given nanotube of chiral indices (u, v), the corresponding nanotube reflections can also
be indexed by the crystallographic indices (n, l) related to its radial projection net. Therefore

the selection rule should be such that the reflection
⇀
G= n

⇀
A

∗
+l

⇀
B

∗
indexed using the radial

projection net should fall onto the reciprocal lattice point ⇀
g indexed using the graphene lattice,

where
⇀
A

∗
and

⇀
B

∗
are the basis vectors of the reciprocal lattice of the radial projection net

(rectangle with sides
⇀
A and

⇀
B) of the nanotube:

⇀
A

∗= 1

u2 + v2 + uv
(u ⇀a1 +v ⇀a2),

⇀
B

∗
= 1

u2
c + v2

c + ucvc

(uc
⇀a1 +vc

⇀a2). (69)

The selection rule can then be stated as
⇀
G=⇀

g (70)

or

n
⇀
A

∗
+l

⇀
B

∗
= h⇀a1

∗
+k⇀a2

∗
. (71)

Multiplying both sides of equation (71) by ⇀a1, we obtain

n
⇀
A

∗ · ⇀a1 +l
⇀
B

∗
· ⇀a1= h (72)
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Figure 10. Schematic assisting the deduction of the order of the operating Bessel function on a
carbon nanotube of chiral indices (u, v). a1 is the basis vector and g refers to a particular reflection
of interest. A is the perimeter vector and B is the axial unit vector of the nanotube. α is the helical
angle of the nanotube and γ is the angle between the g vector and the basis vector a1.

or equivalently

na cos(α)

A
− lB∗ sin(α) = h. (73)

Noting that (cf figure 10)

lB∗ = g sin(γ − α), (74)

where γ is the angle between the basis vector ⇀a1 and the concerned graphene reflection (hk),
then we can obtain the following relationship [113]

n = hu + kv. (75)

As shown in figure 9, the three principal layer lines l1, l2 and l3 are formed by graphene
reflections (01), (1̄0) and (110), respectively. When choosing the reference graphene reflection
as (01), i.e. h = 0 and k = 1, the order of the dominating Bessel function is

n = v, (76)

for graphene reflection (1̄0)

n = −u (77)

and for graphene reflection (110)

n = u + v. (78)

Therefore, the contributing Bessel functions to the three principal layer lines are of orders v,
−u and u + v, respectively.

The order of the dominant Bessel function on each of the principal layer lines can also
be understood by the formation of the electron diffraction pattern from the three principal
helices that are parallel to ⇀a1, ⇀a2 and ⇀a3 = ⇀a2 − ⇀a1, respectively. As discussed in section 3, the
numbers of helix pairs are v, u and u+v, respectively. From figure 9, one can see that the three
principal layer lines correspond to these three helix pairs. Therefore, the first non-extinction
reflections due to these three principal helices are expressed by the Bessel functions of order
v, u and u + v, respectively.
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Table 1. Ratio of the second and the first peak positions of Bessel functions.

n X2/X1 n X2/X1 n X2/X1

1 2.892 11 1.373 21 1.239
2 2.197 12 1.350 22 1.232
3 1.907 13 1.332 23 1.226
4 1.751 14 1.315 24 1.218
5 1.639 15 1.301 25 1.211
6 1.565 16 1.287 26 1.206
7 1.507 17 1.275 27 1.201
8 1.465 18 1.266 28 1.196
9 1.428 19 1.256 29 1.192

10 1.398 20 1.247 30 1.188

The same conclusion can also be reached algebraically from the selection rule [122].
Therefore, the reflection intensities of the three principal layer lines, designated as layer

line l1, l2 and l3 as indicated in figure 9, are related to the chiral indices u and v by

Il1(R) ∝ |Jv(πdR)|2, (79)

Il2(R) ∝ |Ju(πdR)|2 (80)

and

Il3(R) ∝ |Ju+v(πdR)|2. (81)

The principal layer lines l1, l2 and l3 are schematically illustrated in figure 9.
The order n of Bessel function Jn(X) can be determined by examining the positions

of its peaks, which are unique to each Bessel function. An efficient and convenient
means to determine the order n of Bessel function Jn(X) is to examine the ratio X2/X1

of the positions of its first two peaks located at X1 and X2, respectively, or any other
pair of peaks unique to this Bessel function. Once the orders of the respective Bessel
functions are determined, the chiral indices, u and v, are obtained directly. The chiral
indices (u, v) can therefore be obtained directly by determining the order of Bessel
functions Jv(X) and Ju(X) with X = πdR from the scattering intensity distribution on
layer lines l1 and l2, whose intensities are proportional to |Jv(πdR)|2 and |Ju(πdR)|2,
respectively. On the experimental diffraction pattern, the positions of the first two peaks,
R1 and R2, can be measured and the ratio R2/R1 = X2/X1 is independent of the
camera length of the electron microscope at which the electron diffraction pattern is
acquired.

This method allows a rapid and accurate assignment of the chiral indices (u, v). From
the ratios R2/R1 = X2/X1 measured directly from the electron diffraction pattern, the
indices v and u can be obtained from the tabulated values given in table 1. For Bessel
functions J18(X) and J19(X), for example, the ratios of X2/X1 = R2/R1 are 1.266 and
1.256, respectively, the difference is large enough to be identified unambiguously. Using
our current method, we can obtain the peak positions with a precision of 0.3%, which
allows us to assign the chiral indices unambiguously up to index 30 or nanotube diameter
up to 4 nm.

For non-helical nanotubes, i.e. zigzag and armchair nanotubes with chiral indices (u, 0)
and (u, u), respectively, overlap of the principal layer lines occurs. For a zigzag nanotube of
indices (u, 0), layer lines l2 and l3 overlap with each other and its first principal layer line (l1)
has intensity distribution proportional to |J0(πdR)|2 and the second layer line (l2) has intensity
proportional to |Ju(πdR)|2. For an armchair nanotube (u, u), the first layer line l1 and the
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Figure 11. Schematic diffraction pattern of a carbon nanotube of helical angle α—the layer line
spacings D1, D2, etc are not affected by the curvature of the nanotube. Spotty graphene reflections
become streaks elongated in the directions perpendicular to the tubule axis.

second line l2 overlap with intensities proportional to |Ju(πdR)|2 and layer line l3 falls on the
equatorial line.

The major sources of error of this direct method are (a) low signal/noise ratio due to the
small number of atoms in the scattering carbon nanotube and (b) the identification of the peak
positions in the intensity distribution on the principal layer lines. The signal/noise ratio can
be enhanced by applying longer exposure in acquiring the experimental electron diffraction
pattern.

4.3. Ratio of indices v/u

Since the atomic structure of carbon nanotube (u, v) is periodic in the axial direction, the
layer lines are sharp and the respective layer line spacings D1, D2 and D3 can be measured
accurately from the electron diffraction pattern. Although the cylindrical curvature of the
nanotube causes severe distortion to the otherwise hexagonal electron diffraction pattern, the
layer line spacings will not change due to the cylindrical curvature. The axial distances to the
equatorial line of the fundamental reflections that give rise to the principal layers lines can be
calculated using the trigonometric relations illustrated in figure 11:{

D1 = a∗ sin(90◦ − α) = a∗ cos(α),

D2 = a∗ sin(30◦ + α),
(82)

then the helical angle α can be deduced from the ratios of the layer line spacings [120]

α = tan−1

(
2D2 − D1√

3D1

)
, (83)

and the ratio of the chiral indices u and v is given by [124]

v

u
= 2D2 − D1

2D1 − D2
. (84)
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Equation (84) offers a more convenient method to determine the chiral indices (u, v) for the
following reasons.

(a) The ratio is independent of the camera length at which the electron diffraction pattern is
taken.

(b) The ratio is independent of the relative orientation between the nanotube and the incident
electron beam.

(c) When the signal/noise ratio is low, this ratio can still be conveniently obtained.

The use of equation (84) can result in a very high accuracy. The inderminancy arising
from the uncertainties due to equation (84) leads to only the nanotube of the smallest
diameter (u0, v0). Other nanotubes meeting the same equation have chiral indices that
are multiples of (u0, v0), i.e. (u, v) = (mu0, mv0), where m = 1, 2, 3, . . .. Table 2
lists all possible v/u ratios for chiral indices (u, v) up to (30, 30). As can be seen from
the possible indices, the largest uncertainty comes from the nanotubes of chiral indices of
(2v, v), where the difference in diameter between the neighbouring shells is 0.207 nm. This
diameter difference can be discerned from other information such as the real-space electron
micrographs.

4.4. Examples: single-walled carbon nanotubes

The methods described in sections 4.2 and 4.3 offer quick and accurate experimental
determination of the chiral indices of single-walled carbon nanotubes. In order to minimize
radiation damage to the carbon nanotubes, it is advisable to operate the transmission electron
microscope at 80 kV. On the JEM-2010F TEM equipped with a field emission gun, the
nanobeam electron diffraction patterns were acquired with a parallel beam of 20 nm spot
size obtained with the smallest 10 µm condenser aperture and by exciting the first condenser
lens to maximum [152]. The nanobeam electron diffraction patterns were recorded either
directly with a CCD camera or first on photographic films which were later scanned digitally
to obtain a more accurate measurement of the intensity distribution on the concerned layer lines.
Figure 12(a) shows a nanobeam electron diffraction pattern of a single-walled carbon nanotube
of diameter about 1.4 nm (high-resolution electron microscope image is given as an inset with
a 2 nm scale bar). From the intensity profiles on the three principal layer lines (l1, l2 and l3),
the ratios R2/R1 = X2/X1 on layer line l1 and l2 (figures 12(b) and (c)) were measured to be
2.200 and 1.279, respectively. The orders of Bessel functions, and thus the chiral indices of the
nanotube, were determined to be v = 2 and u = 17 (cf, table 1). Nanotube (17,2) is a metallic
nanotube of diameter 1.418 nm and helicity 5.47◦. Figure 13 shows the electron diffraction
pattern obtained from another nanotube of similar diameter (image shown as inset with scale
bar 2 nm). Using the same method, the chiral indices for this single-walled carbon nanotube
were determined to be (17,1), which is a semiconducting tubule of diameter 1.374 nm and
helicity 2.83◦.

When the diameter of the nanotube is large, the ratio of X2 and X1 for a Bessel
function is closer to that of its neighbours. In this case, layer lines l3 (formed by the
graphene (110) reflections) and/or l4 (formed by the (1̄10) graphene reflections) whose
intensity profiles correspond to |Ju+v(πdR)|2 and |Ju−v(πdR)|2, respectively, can be used
as supplementary information to narrow down the choices and minimize the possible
errors.

Given the experimental limitations, using the ratio of layer line spacings (equation 84)
would give rise to results of highest accuracy. The major errors in the measurement of helicity
come from the uncertainties in the measurement of the layer line spacings D1 and D2. In our
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Table 2. v/u ratios.

v/u u v d (nm) alpha v/u u v d (nm) alpha v/u u v d (nm) alpha v/u u v d (nm) alpha

0.0000 u 0 — 0.000 0.1538 13 2 1.105 7.053 0.2759 29 8 2.640 11.857 0.4000 5 2 0.489 16.102
0.0333 30 1 2.389 1.626 0.1538 26 4 2.209 7.053 0.2778 18 5 1.641 11.927 0.4000 10 4 0.978 16.102
0.0345 29 1 2.311 1.682 0.1579 19 3 1.618 7.223 0.2800 25 7 2.282 12.008 0.4000 15 6 1.467 16.102
0.0357 28 1 2.233 1.740 0.1600 25 4 2.132 7.311 0.2857 7 2 0.641 12.216 0.4000 20 8 1.956 16.102
0.0370 27 1 2.154 1.804 0.1667 6 1 0.513 7.589 0.2857 14 4 1.282 12.216 0.4000 25 10 2.445 16.102
0.0385 26 1 2.076 1.872 0.1667 12 2 1.027 7.589 0.2857 21 6 1.923 12.216 0.4000 30 12 2.934 16.102
0.0400 25 1 1.998 1.945 0.1667 18 3 1.540 7.589 0.2857 28 8 2.564 12.216 0.4074 27 11 2.652 16.337
0.0417 24 1 1.920 2.024 0.1667 24 4 2.054 7.589 0.2917 24 7 2.205 12.432 0.4091 22 9 2.163 16.390
0.0435 23 1 1.841 2.111 0.1667 30 5 2.567 7.589 0.2941 17 5 1.564 12.520 0.4118 17 7 1.674 16.474
0.0455 22 1 1.763 2.204 0.1724 29 5 2.490 7.827 0.2963 27 8 2.487 12.598 0.4138 29 12 2.859 16.537
0.0476 21 1 1.685 2.307 0.1739 23 4 1.976 7.889 0.3000 10 3 0.923 12.730 0.4167 12 5 1.185 16.627
0.0500 20 1 1.607 2.419 0.1765 17 3 1.463 7.994 0.3000 20 6 1.846 12.730 0.4167 24 10 2.370 16.627
0.0526 19 1 1.528 2.543 0.1786 28 5 2.412 8.080 0.3000 30 9 2.770 12.730 0.4211 19 8 1.881 16.764
0.0556 18 1 1.450 2.680 0.1818 11 2 0.949 8.213 0.3043 23 7 2.129 12.885 0.4231 26 11 2.577 16.826
0.0588 17 1 1.372 2.833 0.1818 22 4 1.899 8.213 0.3077 13 4 1.205 13.004 0.4286 7 3 0.696 16.996
0.0625 16 1 1.294 3.004 0.1852 27 5 2.335 8.350 0.3077 26 8 2.411 13.004 0.4286 14 6 1.392 16.996
0.0667 15 1 1.216 3.198 0.1875 16 3 1.385 8.445 0.3103 29 9 2.693 13.098 0.4286 21 9 2.088 16.996
0.0667 30 2 2.431 3.198 0.1905 21 4 1.821 8.565 0.3125 16 5 1.488 13.174 0.4286 28 12 2.784 16.996
0.0690 29 2 2.353 3.304 0.1923 26 5 2.257 8.639 0.3158 19 6 1.770 13.289 0.4333 30 13 2.991 17.142
0.0714 14 1 1.137 3.418 0.2000 5 1 0.436 8.948 0.3182 22 7 2.052 13.373 0.4348 23 10 2.295 17.187
0.0714 28 2 2.275 3.418 0.2000 10 2 0.872 8.948 0.3200 25 8 2.335 13.436 0.4375 16 7 1.599 17.269
0.0741 27 2 2.197 3.540 0.2000 15 3 1.308 8.948 0.3214 28 9 2.617 13.486 0.4400 25 11 2.502 17.345
0.0769 13 1 1.059 3.670 0.2000 20 4 1.744 8.948 0.3333 3 1 0.282 13.898 0.4444 9 4 0.903 17.480
0.0769 26 2 2.119 3.670 0.2000 25 5 2.180 8.948 0.3333 6 2 0.565 13.898 0.4444 18 8 1.806 17.480
0.0800 25 2 2.040 3.811 0.2000 30 6 2.616 8.948 0.3333 9 3 0.847 13.898 0.4444 27 12 2.709 17.480
0.0833 12 1 0.981 3.963 0.2069 29 6 2.539 9.223 0.3333 12 4 1.129 13.898 0.4483 29 13 2.916 17.596
0.0833 24 2 1.962 3.963 0.2083 24 5 2.103 9.280 0.3333 15 5 1.412 13.898 0.4500 20 9 2.013 17.647
0.0870 23 2 1.884 4.128 0.2105 19 4 1.667 9.367 0.3333 18 6 1.694 13.898 0.4545 11 5 1.110 17.784



2786
L

-C
Q

in

Table 2. (Continued.)

v/u u v d (nm) alpha v/u u v d (nm) alpha v/u u v d (nm) alpha v/u u v d (nm) alpha

0.0909 11 1 0.903 4.307 0.2143 14 3 1.231 9.515 0.3333 21 7 1.976 13.898 0.4545 22 10 2.220 17.784
0.0909 22 2 1.806 4.307 0.2143 28 6 2.461 9.515 0.3333 24 8 2.259 13.898 0.4583 24 11 2.427 17.897
0.0952 21 2 1.728 4.502 0.2174 23 5 2.025 9.637 0.3333 27 9 2.541 13.898 0.4615 13 6 1.317 17.992
0.1000 10 1 0.825 4.715 0.2222 9 2 0.795 9.826 0.3333 30 10 2.823 13.898 0.4615 26 12 2.635 17.992
0.1000 20 2 1.650 4.715 0.2222 18 4 1.589 9.826 0.3448 29 10 2.747 14.290 0.4643 28 13 2.842 18.073
0.1000 30 3 2.475 4.715 0.2222 27 6 2.384 9.826 0.3462 26 9 2.465 14.335 0.4667 15 7 1.524 18.143
0.1034 29 3 2.397 4.869 0.2273 22 5 1.948 10.023 0.3478 23 8 2.183 14.392 0.4667 30 14 3.049 18.143
0.1053 19 2 1.572 4.950 0.2308 13 3 1.153 10.158 0.3500 20 7 1.900 14.465 0.4706 17 8 1.732 18.258
0.1071 28 3 2.319 5.033 0.2308 26 6 2.307 10.158 0.3529 17 6 1.618 14.564 0.4737 19 9 1.939 18.349
0.1111 9 1 0.747 5.209 0.2333 30 7 2.666 10.257 0.3571 14 5 1.336 14.705 0.4762 21 10 2.146 18.422
0.1111 18 2 1.494 5.209 0.2353 17 4 1.512 10.333 0.3571 28 10 2.672 14.705 0.4783 23 11 2.353 18.482
0.1111 27 3 2.241 5.209 0.2381 21 5 1.871 10.440 0.3600 25 9 2.389 14.800 0.4800 25 12 2.560 18.533
0.1154 26 3 2.163 5.397 0.2400 25 6 2.230 10.513 0.3636 11 4 1.053 14.921 0.4815 27 13 2.767 18.576
0.1176 17 2 1.416 5.496 0.2414 29 7 2.589 10.566 0.3636 22 8 2.107 14.921 0.4828 29 14 2.975 18.613
0.1200 25 3 2.085 5.599 0.2500 4 1 0.359 10.893 0.3667 30 11 2.878 15.021 0.5000 2 1 0.207 19.107
0.1250 8 1 0.669 5.818 0.2500 8 2 0.718 10.893 0.3684 19 7 1.825 15.079 0.5000 4 2 0.414 19.107
0.1250 16 2 1.338 5.818 0.2500 12 3 1.077 10.893 0.3704 27 10 2.596 15.143 0.5000 6 3 0.622 19.107
0.1250 24 3 2.007 5.818 0.2500 16 4 1.435 10.893 0.3750 8 3 0.771 15.295 0.5000 8 4 0.829 19.107
0.1304 23 3 1.929 6.053 0.2500 20 5 1.794 10.893 0.3750 16 6 1.542 15.295 0.5000 10 5 1.036 19.107
0.1333 15 2 1.260 6.178 0.2500 24 6 2.153 10.893 0.3750 24 9 2.314 15.295 0.5000 12 6 1.243 19.107
0.1333 30 4 2.520 6.178 0.2500 28 7 2.512 10.893 0.3793 29 11 2.803 15.436 0.5000 14 7 1.450 19.107
0.1364 22 3 1.851 6.309 0.2593 27 7 2.435 11.242 0.3810 21 8 2.031 15.490 0.5000 16 8 1.657 19.107
0.1379 29 4 2.443 6.376 0.2609 23 6 2.076 11.302 0.3846 13 5 1.260 15.608 0.5000 18 9 1.865 19.107
0.1429 7 1 0.591 6.587 0.2632 19 5 1.717 11.387 0.3846 26 10 2.520 15.608 0.5000 20 10 2.072 19.107
0.1429 14 2 1.182 6.587 0.2667 15 4 1.359 11.517 0.3889 18 7 1.749 15.746 0.5000 22 11 2.279 19.107
0.1429 21 3 1.774 6.587 0.2667 30 8 2.717 11.517 0.3913 23 9 2.238 15.824 0.5000 24 12 2.486 19.107
0.1429 28 4 2.365 6.587 0.2692 26 7 2.358 11.612 0.3929 28 11 2.727 15.874 0.5000 26 13 2.693 19.107
0.1481 27 4 2.287 6.812 0.2727 11 3 1.000 11.742 — — — — — 0.5000 28 14 2.900 19.107
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Table 2. (Continued.)

v/u u v d (nm) alpha v/u u v d (nm) alpha v/u u v d (nm) alpha v/u u v d (nm) alpha

0.1500 20 3 1.696 6.890 0.2727 22 6 1.999 11.742 — — — — — 0.5000 30 15 3.108 19.107
0.5172 29 15 3.034 19.591 0.6364 11 7 1.231 22.689 0.7500 4 3 0.476 25.285 0.8500 20 17 2.512 27.320
0.5185 27 14 2.827 19.626 0.6364 22 14 2.461 22.689 0.7500 8 6 0.953 25.285 0.8519 27 23 3.394 27.355
0.5200 25 13 2.619 19.667 0.6400 25 16 2.803 22.777 0.7500 12 9 1.429 25.285 0.8571 7 6 0.882 27.457
0.5217 23 12 2.412 19.715 0.6429 14 9 1.572 22.846 0.7500 16 12 1.905 25.285 0.8571 14 12 1.765 27.457
0.5238 21 11 2.205 19.773 0.6429 28 18 3.144 22.846 0.7500 20 15 2.382 25.285 0.8571 21 18 2.647 27.457
0.5263 19 10 1.998 19.842 0.6471 17 11 1.913 22.947 0.7500 24 18 2.858 25.285 0.8571 28 24 3.530 27.457
0.5294 17 9 1.791 19.927 0.6500 20 13 2.255 23.018 0.7500 28 21 3.334 25.285 0.8621 29 25 3.665 27.551
0.5333 15 8 1.584 20.034 0.6522 23 15 2.596 23.070 0.7500 24 18 2.858 25.285 0.8636 22 19 2.783 27.581
0.5333 30 16 3.167 20.034 0.6538 26 17 2.937 23.110 0.7586 29 22 3.469 25.469 0.8667 15 13 1.900 27.638
0.5357 28 15 2.960 20.099 0.6552 29 19 3.278 23.141 0.7600 25 19 2.993 25.498 0.8696 23 20 2.918 27.693
0.5385 13 7 1.376 20.174 0.6667 3 2 0.341 23.413 0.7600 25 19 2.993 25.498 0.8750 8 7 1.018 27.796
0.5385 26 14 2.753 20.174 0.6667 6 4 0.683 23.413 0.7619 21 16 2.517 25.539 0.8750 16 14 2.036 27.796
0.5417 24 13 2.546 20.260 0.6667 9 6 1.024 23.413 0.7647 17 13 2.040 25.598 0.8750 24 21 3.054 27.796
0.5455 11 6 1.169 20.363 0.6667 12 8 1.365 23.413 0.7667 30 23 3.605 25.639 0.8800 25 22 3.189 27.889
0.5455 22 12 2.339 20.363 0.6667 15 10 1.707 23.413 0.7692 13 10 1.564 25.693 0.8824 17 15 2.171 27.933
0.5500 20 11 2.132 20.485 0.6667 18 12 2.048 23.413 0.7692 26 20 3.128 25.693 0.8846 26 23 3.325 27.975
0.5517 29 16 3.094 20.531 0.6667 21 14 2.389 23.413 0.7727 22 17 2.652 25.767 0.8889 9 8 1.153 28.055
0.5556 9 5 0.962 20.633 0.6667 24 16 2.731 23.413 0.7778 9 7 1.088 25.872 0.8889 18 16 2.307 28.055
0.5556 18 10 1.924 20.633 0.6667 27 18 3.072 23.413 0.7778 18 14 2.176 25.872 0.8889 27 24 3.460 28.055
0.5556 27 15 2.887 20.633 0.6667 30 20 3.413 23.413 0.7778 27 21 3.264 25.872 0.8929 28 25 3.596 28.128
0.5600 25 14 2.680 20.751 0.6786 28 19 3.207 23.691 0.7778 27 21 3.264 25.872 0.8947 19 17 2.443 28.163
0.5625 16 9 1.717 20.817 0.6800 25 17 2.865 23.724 0.7826 23 18 2.787 25.972 0.8966 29 26 3.732 28.196
0.5652 23 13 2.472 20.889 0.6818 22 15 2.524 23.766 0.7857 14 11 1.699 26.037 0.9000 10 9 1.289 28.259
0.5667 30 17 3.228 20.927 0.6842 19 13 2.183 23.822 0.7857 28 22 3.399 26.037 0.9000 20 18 2.578 28.259
0.5714 7 4 0.755 21.052 0.6842 19 13 2.183 23.822 0.7857 28 22 3.399 26.037 0.9000 30 27 3.867 28.259
0.5714 14 8 1.510 21.052 0.6875 16 11 1.841 23.897 0.7895 19 15 2.311 26.114 0.9048 21 19 2.714 28.346
0.5714 21 12 2.265 21.052 0.6897 29 20 3.341 23.947 0.7917 24 19 2.923 26.159 0.9091 11 10 1.425 28.425
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Table 2. (Continued.)

v/u u v d (nm) alpha v/u u v d (nm) alpha v/u u v d (nm) alpha v/u u v d (nm) alpha

0.5714 28 16 3.021 21.052 0.6923 13 9 1.500 24.007 0.7931 29 23 3.534 26.189 0.9091 22 20 2.849 28.425
0.5769 26 15 2.814 21.195 0.6923 26 18 3.000 24.007 0.7931 29 23 3.534 26.189 0.9130 23 21 2.985 28.497
0.5789 19 11 2.058 21.247 0.6957 23 16 2.659 24.084 0.8000 5 4 0.612 26.329 0.9167 12 11 1.560 28.562
0.5833 12 7 1.303 21.361 0.7000 10 7 1.159 24.182 0.8000 10 8 1.223 26.329 0.9167 24 22 3.120 28.562
0.5833 24 14 2.606 21.361 0.7000 20 14 2.318 24.182 0.8000 15 12 1.835 26.329 0.9200 25 23 3.256 28.622
0.5862 29 17 3.155 21.435 0.7000 30 21 3.476 24.182 0.8000 20 16 2.446 26.329 0.9231 13 12 1.696 28.677
0.5882 17 10 1.851 21.487 0.7000 20 14 2.318 24.182 0.8000 25 20 3.058 26.329 0.9231 26 24 3.392 28.677
0.5909 22 13 2.399 21.555 0.7037 27 19 3.135 24.266 0.8000 30 24 3.669 26.329 0.9259 27 25 3.527 28.728
0.5926 27 16 2.948 21.598 0.7059 17 12 1.976 24.315 0.8000 30 24 3.669 26.329 0.9286 14 13 1.831 28.775
0.6000 5 3 0.548 21.787 0.7083 24 17 2.794 24.370 0.8077 26 21 3.193 26.485 0.9286 28 26 3.663 28.775
0.6000 10 6 1.096 21.787 0.7143 7 5 0.818 24.504 0.8095 21 17 2.582 26.522 0.9310 29 27 3.798 28.819
0.6000 15 9 1.644 21.787 0.7143 14 10 1.635 24.504 0.8125 16 13 1.970 26.582 0.9333 15 14 1.967 28.859
0.6000 20 12 2.193 21.787 0.7143 21 15 2.453 24.504 0.8148 27 22 3.329 26.628 0.9333 30 28 3.934 28.859
0.6000 25 15 2.741 21.787 0.7143 28 20 3.270 24.504 0.8182 11 9 1.359 26.696 0.9375 16 15 2.103 28.933
0.6000 30 18 3.289 21.787 0.7143 21 15 2.453 24.504 0.8182 22 18 2.717 26.696 0.9412 17 16 2.238 28.998
0.6071 28 17 3.082 21.967 0.7200 25 18 2.929 24.631 0.8214 28 23 3.464 26.760 0.9444 18 17 2.374 29.055
0.6087 23 14 2.534 22.006 0.7222 18 13 2.111 24.680 0.8235 17 14 2.105 26.802 0.9474 19 18 2.509 29.106
0.6111 18 11 1.986 22.066 0.7241 29 21 3.405 24.722 0.8261 23 19 2.852 26.853 0.9500 20 19 2.645 29.152
0.6154 13 8 1.437 22.173 0.7273 11 8 1.294 24.791 0.8276 29 24 3.599 26.882 0.9524 21 20 2.781 29.193
0.6154 26 16 2.875 22.173 0.7273 22 16 2.588 24.791 0.8333 6 5 0.747 26.995 0.9545 22 21 2.916 29.231
0.6190 21 13 2.327 22.264 0.7308 26 19 3.064 24.868 0.8333 12 10 1.494 26.995 0.9565 23 22 3.052 29.265
0.6207 29 18 3.216 22.304 0.7333 15 11 1.770 24.924 0.8333 18 15 2.241 26.995 0.9583 24 23 3.187 29.296
0.6250 8 5 0.889 22.411 0.7333 30 22 3.540 24.924 0.8333 24 20 2.988 26.995 0.9600 25 24 3.323 29.325
0.6250 16 10 1.779 22.411 0.7368 19 14 2.246 25.001 0.8333 30 25 3.735 26.995 0.9615 26 25 3.459 29.351
0.6250 24 15 2.668 22.411 0.7391 23 17 2.723 25.050 0.8400 25 21 3.123 27.126 0.9630 27 26 3.594 29.376
0.6296 27 17 3.009 22.525 0.7391 23 17 2.723 25.050 0.8421 19 16 2.376 27.167 0.9643 28 27 3.730 29.399
0.6316 19 12 2.120 22.572 0.7407 27 20 3.199 25.085 0.8462 13 11 1.629 27.245 0.9655 29 28 3.866 29.420
0.6333 30 19 3.351 22.615 — — — — — 0.8462 26 22 3.259 27.245 0.9667 30 29 4.001 29.439

— — — — — — — — — — — — — — 1.0000 u u — 30.000
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Figure 12. (a) Electron diffraction pattern of carbon nanotube (17,2). Inset is a high-resolution
electron microscope image of the nanotube. The three principal layer lines, l1, l2 and l3, are
indicated in the figure. (b) Intensity profile of principal layer line l1. The ratio of the positions of
the second peak (X2) and the first peak (X1) is 2.190, corresponding to |J2(X)|2 which is plotted
as the solid line. (c) Intensity profile of principal layer line l2. The ratio of the positions of the
second peak (X2) and the first peak (X1) is 1.279, corresponding to the Bessel function |J17(X)|2
which is plotted as the solid line. The chiral indices of the nanotube are therefore (17,2) [122].

current measurement, the errors of measuring D1 and D2 are 0.009 nm−1. The errors in the
deduction of the chiral indices are no larger than 0.2%.

4.5. Bundles of single-walled carbon nanotubes

Single-walled carbon nanotubes tend to form raft-like bundles when they are produced by
laser evaporation or arc-discharge [11, 15, 16]. Though the diameter of the nanotubes can
be measured in electron micrographs, their helicity distribution is yet to be well established.
When they are packed in hexagonal closed packing, although their diameters are the same, it
is not known if the helicity of all tubules are also the same, despite theoretical argument and
geometry seeming to favour such a case [153].

For a bundle of single-walled carbon nanotubes of the same diameter, the total scattering
amplitude is the coherent sum of all individual contributions:

FT =
∑
m

Fm(R, 	, l) exp(2π iδm), (85)

where δm is the phase shift caused by relative rotation and translation. Given the weak bonding
forces between the neighbouring nanotubes, it is reasonable to assume that the abovementioned
two degrees of freedom will make the scattering to a large extent incoherent. In this case, the
resultant diffraction intensity distribution will be approximately equal to the sum of individual
scattering, in particular on layer lines � �= 0.

Figure 14(a) shows a model structure of a raft-like bundle of single-walled carbon
nanotubes. All nanotubes have similar diameter and they are in closed hexagonal packing.
Figure 14(b) is an electron micrograph of such a raft-like bundle of single-walled carbon
nanotubes produced by single-beam laser evaporation [16]. There are about 50 nanotubes, of
about the same diameter, in this bundle. Figure 14(c) is an experimental electron diffraction
pattern obtained from the bundle of nanotubes [112]. Letters A and Z designate the positions
of the reflection peaks from armchair and zigzag nanotubes, respectively. The continuous
distribution along the (100)∗ and (110)∗ arcs are symmetrical about the tubule axis, indicating
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Figure 13. Electron diffraction pattern of nanotube (17,1). Inset is an electron microscope image
of the nanotube. The arrows point to the peak positions on layer line l1 and l2, respectively. The
chiral indices of this nanotube were determined to be (17,1) [122].

(a) (b) (c)

Figure 14. (a) Structural model of a bundle of single-walled carbon nanotubes in closed hexagonal
packing. (b) Electron microscope image of a bundle of raft-like single-walled carbon nanotubes.
(c) Electron diffraction pattern of the bundle where the reflection intensities form continuous arcs.
Letters A and Z indicate positions of reflection maxima due to the armchair and zigzag structures,
respectively [112].

that the scattering tubules possess a rather uniform distribution of helicity. The electron
diffraction can be calculated using a simplified model as shown in figure 15(a). In this model,
nine nanotubes of about the same diameter of 1.4 nm are arranged in closed hexagonal packing.
The electron diffraction intensity distribution is displayed in figure 15(b). As expected, the
intensities are distributed rather evenly between the positions corresponding to the zigzag and
the armchair structures.
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(a)
(b)

Figure 15. (a) A model structure composed of nine carbon nanotubes of about the same diameter.
The chiral indices of each nanotube are also given in the figure. (b) Calculated electron diffraction
pattern of the model structure. A continuous distribution of scattering intensities is formed due to
the rather uniform distribution of helicity in the nanotubes.

Figure 16. Electron diffraction pattern of a double-walled carbon nanotube. Two sets of diffraction
patterns, indicated by arrows of different colours, are identified. The chiral indices of the two shells
of this nanotube are (15,11) and (30,3), respectively. Their diameter and helicity are (1.770 nm,
24.92◦) and (2.475 nm, 4.72◦), respectively [152].

4.6. Multiwalled carbon nanotubes

For a multiwalled carbon nanotube, it is necessary to determine the chiral indices [uj , vj ] for
each individual shell j . While the methods detailed in sections 4.1–4.4 are valid for multiwalled
carbon nanotubes where the inter-layer interferences are not strong, due to the much larger
diameter of multiwalled carbon nanotubes, complementary information such as equation (84)
is often very helpful to eliminate ambiguities. When the layer lines are read from the digitized
data, the uncertainties in measuring the ratio v/u can be reduced to less than 0.2%. Once all
the chiral indices are determined, the inter-tubular distances between the neighbouring shells
in the nanotube can also be obtained.
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Figure 17. Electron diffraction pattern of a triple-walled carbon nanotube. The pattern consists
of three sets of individual patterns due to the three shells of the nanotube. The chiral indices
of the three shells are determined to be (35,14), (37,25) and (40,34), respectively. All shells are
metallic [152].

Figure 16 shows an electron diffraction pattern of a double-walled carbon nanotube [152].
As can be seen from the pattern, there are now six pairs of principal layer lines across the
equatorial layer line due to the two shells of the nanotube. The two sets of electron diffraction
patterns are indicated by arrows coloured differently in the figure. The chiral indices of the
two shells are determined to be (15,11) and (30,3), respectively. Their diameter and helicity
are (1.770 nm, 24.92◦) and (2.475 nm, 4.72◦), respectively, with an inter-layer spacing of
0.355 nm.

Figure 17 shows an electron diffraction pattern of a triple-walled carbon nanotube where
nine pairs of principal layer lines are present [154]. The chiral indices of the three shells are
determined to be (35,14), (37,25) and (40,34), respectively. All the three shells are metallic.

Figure 18 shows the TEM image and the corresponding electron diffraction pattern of a
quadruple-walled nanotube [124]. From the TEM image shown as the inset of figure 18(a), we
can estimate that the nanotube has inner and outer diameters of 2.6 nm and 5.0 nm, respectively.
The electron diffraction pattern of this nanotube, a magnified portion is shown in figure 18(b),
was used to deduce the chiral indices of each and every shell of the nanotube accurately. It is
also interesting to note that there are only three different helicities by examining the number of
principal layer lines indicated by the arrows coloured in red, green and yellow in the electron
diffraction pattern due to the fact that two of the four shells have the same helicity. By
measuring the principal layer line spacings in the electron diffraction pattern in figure 18(b),
the v/u ratios were obtained as 0.031, 0.642 and 0.927 and the helicities were 1.53◦, 22.84◦

and 28.76◦, respectively. Using the principal layer line l1 and the positions of the intensity
peaks on this layer line, the value of index v can be deduced: v = 25 for the helicity of 22.84◦

and v = 24 for the helicity of 28.76◦. Combining with the v/u ratios determined above, the
chiral indices for these two nanotubes are assigned to be (26,24) and (39,25), respectively,
which are neighbouring shells in the nanotube.

Since there are four individual shells in the nanotube, two shells must have the same
helicity. These two shells are identified by the modulations in the intensity distribution on the
layer line marked with red arrows (helicity 1.53◦), which indicate that two nanotubes have
both contributed to these layer lines and their chiral indices were determined to be (32,1) and
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(a)

(c)

(b)

(d)

Figure 18. (a) Electron diffraction pattern of a quadruple-walled carbon nanotube (inset shows the
electron microscope image). (b) Magnified portion of (a). Only three sets of individual electron
diffraction patterns can be identified due to the overlapping of the diffraction patterns of two of
them, indicating that these two shells have the same helicity. (c) Side view of the structure of the
quadruple-walled carbon nanotube. (d) Cross-sectional view of the determined structure where the
chiral indices of each shell are also indicated [124].

(64,2), respectively, by making use of the geometric constraints of the concentric shells in the
multiwalled carbon nanotube. Figure 18(c) shows the determined structure in side view of
the four shells of this nanotube with chiral indices (32,1), (26,24), (39,25) and (64,2), whose
cross-sectional view is given in figure 18(d). All these shells are semiconducting. It is worth
noting that the inter-tubular distances are not of the same value. They vary from 0.423 to
0.492 nm and to 0.358 nm from the outermost shell to the innermost shell in the nanotube.

The procedure presented here for determining the atomic structure of the quadruple-walled
carbon nanotube can be extended to multiwalled carbon nanotubes with fewer or more shells.
With the precision given in the present measurement, up to nine shells (outer diameter up to
10 nm) have been determined unambiguously [155]. Once the atomic structure of a multiwalled
carbon nanotube is determined, we can predict their physical and chemical properties, including
identifying which shell is metallic or semiconducting.

5. Symmetry of electron diffraction from carbon nanotubes

Observation and intepretation of the symmetry present in the electron diffraction pattern of a
carbon nanotube have been carried out ever since the discovery of carbon nanotubes. For an
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(a)

(b)

(c)

Figure 19. (a) Geometric relationship in electron diffraction from a carbon nanotube when it is
tilted with respect to the tubule axis by an angle β. (b) Corresponding relationship in the reciprocal
space, where the diffraction intensities due to the nanotube are represented by a set of concentric
rings equally spaced in the axial direction. (c) Cross-sectional view of the intercept of the diffraction
plane and the reciprocal space structure of the nanotube at an incline incident angle β. The observed
separation R is smaller than the maximum value when the nanotube is perpendicular to the incident
electron beam (β = 0◦). H is the vertical height of the intercept of the diffraction plane and the
intensity rings relative to the centre of the intensity rings.

ideal (straight and cylindrical) single-walled carbon nanotube, it can have many symmetry
elements, such as the inversion centre, rotational axes and reflection planes. Under the
kinematical diffraction conditions, there is always an inversion centre in the diffraction intensity
distribution, regardless of the symmetry possessed by the tubule structure due to the Friedel’s
law. The addition of the inversion centre will therefore make the symmetry of the diffraction
patterns be no lower than the nanotube.

Due to the finite size of carbon nanotubes in the radial directions, the intensity distribution
in the electron diffraction patterns from a carbon nanotube deviates noticeably from that of
graphene which gives rise to regular hexagonal symmetry. The electron diffraction intensities
elongate perpendicular to the tubule axis and form a set of layer lines normal to the tubule axis.
The elongated intensity distribution stipulates that the electron diffraction pattern from carbon
nanotubes loses hexagonal symmetry.

5.1. Single-walled carbon nanotubes

It has been observed experimentally that the electron diffraction pattern of a single-walled
carbon nanotube showed 2mm symmetry [8]. This conclusion has recently been challenged
in an analysis where the authors argue that the 2mm symmetry usually does not exist in the
electron diffraction patterns of a single-walled carbon nanotube unless the atomic structure of
the nanotube satisfies some special conditions, i.e. the crystallographic indices (u, v) are all
even [109].

When the incident electron beam is perpendicular to the tubule axis, i.e. β = 0◦ as shown
in figures 19(a) and (b), the tubule axis is in the diffraction plane that intersects the reciprocal
space of the nanotube. Under normal incidence, the dark line in figure 19(c) (intersection
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of the diffraction plane and the three-dimensional power spectrum of the carbon nanotube in
the reciprocal space) should pass through the centre of the concentric corona representing the
scattering intensities. Along the dark line, since the orders of all contributing Bessel functions n

have the same evenness/oddity [151], the intensity distribution (cf, equation (48), for example)
dependence on the azimuthal angle 	 observes the following relationship:

I (R, 	 + π, l) = I (R, 	, l), (86)

which is true for all the layer lines in the electron diffraction pattern. Equation (86) shows that
the electron diffraction from a single-walled carbon nanotube has mirror symmetry about the
nanotube axis. Combining with the inversion centre 1̄ due to the Friedel’s law, the electron
diffraction patterns of a single-walled carbon nanotube under normal incidence will therefore
always have 2mm symmetry.

When the incident electron beam is not perpendicular to the tubule axis, i.e. β �= 0◦, the
diffraction plane does not coincide with the tubule axis in the reciprocal space of the carbon
nanotube, although it still passes through the centre of the central diffraction coronae. The
points of intersection with the diffuse coronae representing the scattering intensities, depend
on the tilt angle β and the positions of the layer line planes in the reciprocal space, as shown
schematically in figure 19(b). Figure 19(c) shows the side view of a layer line plane on the left
of the origin and the dark line indicates the intersection of the diffraction plane and the power
spectrum of the nanotube in the reciprocal space. In the electron diffraction pattern under
inclined incidence, the diffraction intensities on layer line l are modulated by Bessel functions
of the same orders as those under normal incidence as shown in figure 19(c). However, the
scattering amplitude measured on the diffraction plane is

Fuv(R, 	, l) =
∑
n,m

f χuv(n, m)γuv(n, m)Jn


πd

√
R2 +

(
l tan β

c

)2

 exp

[
in
(
	 +

π

2

)]
.

(87)

As discussed before, the evenness/oddity of n is the same for all allowed values. The electron
diffraction intensities therefore also satisfy the following equation for all layer lines:

I (R, 	 + π, l) = I (R, 	, l). (88)

This means that the whole electron diffraction pattern of a single-walled carbon nanotube under
inclined incidence also has 2mm symmetry.

Figure 20 shows the simulated electron diffraction patterns of the single-walled carbon
nanotube (14,9) under several different incident directions. When the incident electron beam
is perpendicular to the tubule axis (β = 0◦), the simulated electron diffraction intensities
show 2mm symmetry, as shown in figure 20(a). When the tilting angle β is increased from
0◦ to 10◦ (figure 20(b)), the split diffraction intensities across the tubule axis on the layer
lines move towards the tubule axis. At the same time, the layer line spacings increase by
a factor of 1.015 (=1/ cos 10◦). As we continue to increase the tilting angle β to 20◦,
shown in figure 20(c), the split diffraction intensities on the layer lines move even closer
to the tubule axis and they eventually merge into one single peak at the critical tilt angle
βc = θ = tan−1[(un/n) tan(α)] = 26.8◦, where n = 9 and un = 10.7 is the value at which
Bessel function J9(u) assumes its first peak. At β = 30◦, which is larger than the critical tilt
angle βc, the diffraction plane will not intersect with the first ring of the coronae as illustrated
in figure 20(c) and no significant intensity is observed at the position corresponding to the first
major layer line as shown in figure 20(d). However, during the process of tilting, the 2mm
symmetry of the whole electron diffraction patterns is retained.
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Figure 20. Simulated electron diffraction patterns of single-walled carbon nanotube (14,9) at
various tilt angles. (a) β = 0◦; (b) β = 10◦; (c) β = 20◦ and (d) β = 30◦. 2mm symmetry is
preserved at all tilt angles, though the geometry and intensity distribution of the diffraction pattern
are different when the tilt angle β changes [151].

It should be pointed out that, in general, the atomic structure of a single-walled carbon
nanotube does not have mirror symmetry perpendicular to the tubule axis when discrete atoms
are located at continuous helices around the nanotube, even though the projection of continuous
helices does have mirror symmetry about the tubule axis.

5.2. Multiwalled carbon nanotubes

While the 2mm symmetry had been often observed in the electron diffraction patterns of
multiwalled carbon nanotubes, it is incorrect to assert that the electron diffraction patterns of
multiwalled carbon nanotubes always have 2mm symmetry. When two or more shells of a
multiwalled carbon nanotube have the same helicity, for instance, the inter-layer interferences
may break the 2mm symmetry and leave only the inversion centre present in the electron
diffraction pattern as stipulated by Friedel’s law.

However, since the electron diffraction patterns of single-walled carbon nanotubes always
possess 2mm symmetry [151], this symmetry will also be preserved in the electron diffraction
patterns from a multiwalled carbon nanotube when there is no overlap of diffraction layer
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lines from different shells. This is true if none of the axial periodicities is commensurate with
another shell of the multiwalled carbon nanotube. On the other hand, when the ratio of the axial
periodicities of two concentric shells is a rational number, some layer lines will coincide and
interferences between the scattered electron waves from different shells can take place. The
interferences between two shells produce the most profound effect when the two shells have the
same helicity. Under this circumstance, the two shells satisfy exactly the same selection rule
given in equation (36) and all the principal layer lines overlap. Since the electron diffraction
intensity distribution on each layer line due to one shell is usually governed by a single Bessel
function as discussed in section 4.4, the electron diffraction intensity on a common layer line
l0 due to both shells is [150]

I (R, 	, l0) = χ2
0 f 2{|u1Jn1(πd1R)|2 + |u2Jn2(πd2R)|2

+2u1u2Jn1(πd1R)Jn2(πd2R) cos[(n2 − n1)(	 + π/2) + �ϕ]}, (89)

where χ0 is a constant, n1 and n2 are the orders of the Bessel functions that dominate
the intensity on layer line l0 from the two shells (u1, v1) and (u2, v2), respectively, and
�ϕ = ϕ2 − ϕ1 is the relative phase shift between the two shells. From equation (89), we can
obtain that, when n1 and n2 have opposite oddity/evenness, I (R, 	 + π, l0) �= I (R, 	, l0), i.e.
the electron diffraction pattern will no longer have 2mm symmetry. Therefore, the 2mm
symmetry is broken under the condition that n1 − n2 is an odd number except that the
observation is set at certain special azimuthal angles 	 = (Lπ − �ϕ)/(n2 − n1) (L is an
integer) where I (R, 	 + π, l0) = I (R, 	, l0). Otherwise, when n1 − n2 is an even number,
I (R, 	 + π, l0) = I (R, 	, l0) holds, i.e. the whole electron diffraction pattern will have 2mm
symmetry.

These rules can be extended to include more than two shells of the same helicity to analyse
the symmetry of the electron diffraction patterns of multiwalled carbon nanotubes.

Figure 21(a) shows an electron diffraction pattern of a quintuple-walled carbon nanotube.
The inner and outer diameters of this nanotube are about 2.2 and 5.5 nm, respectively. Twelve
pairs of principal layer lines can be observed, which indicate that four different helicities
exist in the nanotube. Since there are five shells in the nanotube as indicated in the HREM
image [150], there must be two shells that have the same helicity. The overlapped layer lines
are indicated by the three arrows, from which the helicity is determined to be 21.6◦. Using the
methods described in section 4, the chiral indices of the five shells are (i) (22,9), (ii) (33,6),
(iii) (34,20), (iv) (53,12) and (v) (51,30). The two shells, (34,20) and (51,30), have the same
helicity of 21.48◦ which falls within the range of uncertainty of our measurement.

Examination of the intensity distribution on these layer lines indicates that the mirror
symmetry about the equatorial plane or the axial direction is no longer present in the lower two
layer lines l2, and l3, indicated by arrows and therefore the whole diffraction pattern does not
have 2mm symmetry. The breakdown of the 2mm symmetry in the electron diffraction pattern
in figure 21(a) can be understood from equation (89) and the rules developed above. For
the three principal layer lines indicated by the arrows in figure 21(a), the indices of the three
principal layer lines from top to bottom are l1 = (2u + v)/M = 44, l2 = (u + 2v)/M = 37,
and l3 = (u−v)/M = 7, respectively. For layer line l1 = 44, n1 and n2 are n1 = v1 = 20 and
n2 = v2 = 30, respectively, and n2 −n1 = 10 is an even number. Therefore, mirror symmetry
is kept about the tubule axis for this layer line. However, for layer lines l2 = 37 (n1 = −u1 =
−34, n2 = −u2 − 51 and n2 − n1 = −17) and l3 = 7 (n1 = u1 + v1 = 54, n2 = u2 + v2 = 81
and n2 − n1 = 27), both layer lines satisfy the condition under which the mirror symmetry
breaks down, as shown in the electron diffraction pattern given in figure 21(a). Figure 21(b)
shows the intensity profile of the enclosed region (layer line l2 = 37) in figure 21(a) to il-
lustrate the profound asymmetry about the tubule axis. The calculated intensity profile using
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(a)

(b)

Figure 21. (a) Electron diffraction pattern from a quintuple-walled carbon nanotube showing
breakdown of 2mm symmetry. The electron diffraction pattern does not possess 2mm symmetry,
though the inversion centre is present due to Friedel’s law. (b) Intensity profile of the principal
layer line l2, where the asymmetry is apparent [150].

equation (89) is plotted as a solid line for comparison with the experimental data and they match
extremely well.

By constructing a double-walled carbon nanotube composed of two concentric shells
(34,20) and (51,30), respectively, depicted in figure 22(a), numerical simulations of the
electron diffraction intensity distribution were also carried out to demonstrate the breakdown
of the 2mm symmetry in this case [150]. Figure 22(b) displays a typical simulated electron
diffraction pattern which matches the experimental observations very well, where layer line
l1 is symmetrical, while layer lines l2 and l3 are asymmetrical about the vertical axis and the
equatorial plane.

When two shells have commensurate periodicities but different helicities in a multiwalled
carbon nanotube, the overlapping layer lines may not necessarily be the three principal layer
lines l1, l2, and l3 as shown in figure 21(a). Though the rules discussed above are still valid,
the experimentally observed intensities on these layer lines are usually much weaker than the
principal layer lines, and therefore the loss of 2mm symmetry would not be as apparent as in
the case discussed above.

Observation of 2mm symmetry breaking in the electron diffraction patterns of multiwalled
carbon nanotubes is helpful to determine the chiral indices of carbon nanotubes. By applying
the rules developed above, we can easily exclude some ambiguous choices and dramatically
increase the efficiency in assigning the chiral indices for shells of the same helicity in a carbon
nanotube.
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(a)

(b)

Figure 22. (a) Double-walled carbon nanotube composed of (34,20) and (51,30) of the same
helicity α = 21.48◦. (b) Simulated electron diffraction pattern of this nanotube. Arrows indicate
that the intensities are no longer symmetrical about the equatorial plane and/or the vertical central
axis, resulting in loss of the 2mm symmetry of the whole pattern [150].

5.3. Rotational extinctions

When an electron beam is incident on a nanotube positioned perpendicular to the electron
beam, the electron scattering intensity as seen in an electron diffraction pattern, is not only
dependent on the structure, but also on the relative orientation of the nanotube with respect
to the incident electron beam, as can be recognized from the expressions for the scattering
intensity. The orientational relationship becomes more interesting when the atomic structure
of multiwalled carbon nanotubes is concerned as discussed in section 7.

For the nanotubes of zigzag structure, (u, v) = (u, 0), the layer line selection rule becomes
l = (n/u) + 2m and the orientational dependence of the scattering amplitude can be further
reduced to [156]

Fu,0(R, 	, l = even) =
+∞∑
s=0

[
1 + exp

(
2π i

3
l

)]
J2su(πdR) cos

[
2su

(
	 +

π

2

)]
, (90)

and

Fu,0(R, 	, l = odd) =
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2

)]
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(91)
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The summation over s is for all non-negative integers. Since only the Bessel functions of lowest
orders contribute substantially to the total intensities, the significant terms are dominated by
the Bessel functions of lowest orders, s = 0:

Fu,0(R, 	, l = even) ≈
[

1 + exp

(
2πli

3

)]{
J0(πdR) + J2u(πdR) cos

[
2u

(
	 +

π

2

)]}
,

(92)

and

Fu,0(R, 	, l = odd) ≈
[

1 + exp
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. (93)

The corresponding intensities are therefore

Iu,0(R, 	, l = even) = |Fu,0(R, 	, l = even)|2

≈ 4J 2
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and

Iu,0(R, 	, l = odd) = |Fu,0(R, 	, l = odd)|2
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The intensity distribution is modulated by both the dominating Bessel functions and the
orientational variable 	. For the layer lines of even indices (equation (94)), the intensity
dependence on the nanotube orientation is weak. However, for the layer lines of odd indices
(equation (95)), the total layer line intensity distribution is modulated by cos2[u(	 + (π/2))],
which causes much stronger dependence on the orientational parameter 	 with a periodicity
of π/u, though the angular structural periodicity is 2π/u. Because of this angular modulation,
extinction reflections occur at the following orientations:

	ext =




Nπ

u
, (u = odd),

(2N + 1)π

2u
, (u = even),

N = 0, 1, 2, . . . , (2u − 1). (96)

There is a total of 2u orientations at which extinction takes place with an angular interval of
π/u.

Figure 23(a) shows the TEM image of a single-walled carbon nanotube (16,0) (diameter
d = 1.253 nm and helicity α = 0◦) of zigzag structure and figure 23(b) is the corresponding
nanobeam electron diffraction pattern in which the layer lines l2 and l3 overlap [156].

For the carbon nanotube (20,0), its angular structural periodicity is 18◦, and the intensity
distribution is periodic with a repetition of 9◦. The total number of extinction orientations is 40
across the cylindrical circumference with an interval of 2π/40 = 9◦. Figures 24(a)–(d) show
the calculated electron scattering intensities from the (20,0) nanotube at angular orientations
(projected structure of the model nanotube is also given in each figure) 0◦, 1.5◦, 3.0◦ and
4.5◦. A total extinction of the odd layer lines occurs at 	 = 4.5◦ (figure 24(d)). Figure 25(a)
is an electron microscope image of zigzag carbon nanotube (20,0). Figure 25(b) shows an
experimental electron diffraction pattern of nanotube (20,0) in which the odd layer lines
(l = ±1, ±3, . . .) are in extinction. The inset shows the image of this nanotube, whose diameter
is 1.566 nm. Excellent agreement has been obtained between the theoretical calculations and
the experimental observations, indicated in figure 25(c) where the theoretical data (figure 24(d))
are plotted on the experimental electron diffraction data (figure 25(b)).
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Figure 23. (a) Electron microscope image of single-walled carbon nanotube (16,0) of zigzag
structure. (b) Electron diffraction pattern of the nanotube where the principal layer lines l2 and l3
overlap [156].

For nanotubes of armchair structure, i.e. (u, v) = (u, u), the layer line selection rule is
the same as for zigzag nanotubes, l = (n/u) + 2m, and the orientational dependence of the
electron scattering intensities can be obtained similarly

Iu,u(R, 	, l = even) ≈ 4J 2
0 (πdR)

{
1 +

J2u(πdR)

J0(πdR)
cos
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(
	 +
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2

)
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3

]}
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and
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2
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+

π

3

]
. (98)

Like the case for the zigzag nanotubes, the orientational dependence in the even layer lines are
secondary (equation (97)) and a total extinction occurs in the odd layer lines when

	ext =




(3N + 2)π

3u
, (u = odd),

(6N + 1)π

6u
, (u = even),

N = 0, 1, 2, . . . , (2u − 1). (99)

There are also 2u orientations in which extinction occurs with an interval of π/u. Figure 26
shows the calculated electron diffraction patterns of an armchair nanotube (10,10) at
orientations 	 = 0◦, 3◦, 9◦ and 12◦. For the (10,10) nanotube, the diffraction intensity
distribution at 	 = 6◦ is the same as 	 = 0◦. The interval between neighbouring extinction
orientations is 18◦. Extinction on the odd layer lines occurs at 	 = 3◦ (figure 26(b)).

The occurrence of extinction is due to the fact that at certain specific orientations, the
periodicity of the projected structure of the achiral nanotube in the axial direction is halved.
The projected structure with a halved periodicity at these specific orientations, as illustrated
in figures 24(d) and 26(b), results in the doubling of the layer line spacing in the reciprocal
space.

The orientational dependence of electron diffraction from carbon nanotubes is useful when
the atomic structure of multiwalled carbon nanotubes is determined. It should be noted that the
orientational dependence at other non-extinctive angular positions, even though rather weak, is
also present as shown in the details of the calculated electron diffraction patterns [157]. When
measurement of the electron diffraction intensities becomes more accurate, determination of
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Figure 24. Calculated electron diffraction patterns of zigzag nanotube (20,0) when it is rotated
about its axis at (a) 0◦; (b) 1.5◦; (c) 3.0◦ and (d) 4.5◦. Extinction of the odd-indexed layer lines is
observed as indicated by the arrows in (a) [156].

the absolute orientation will be possible. For example, for a double-walled carbon nanotube,
when the diameter and helicity of each shell are determined, there are still three degrees of
freedom that are undetermined. They are (a) the relative angular rotation between the two
shells; (b) the relative translational displacement between the two shells in the axial direction;
and (c) the respective enantiomorph of each shell. The present analysis will help resolve the
first ambiguity in the determination of the atomic structure of multiwalled carbon nanotubes.

For multiwalled carbon nanotubes of more than two shells, the situation becomes more
complex but the principles discussed here are valid for extensions.

6. Deformed carbon nanotubes

While carbon nanotubes have extremely high Young’s modulus in the axial direction, it is rather
soft in the radial direction as has been well demonstrated both theoretically and experimentally
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(c)

Figure 25. (a) Electron microscope image of zigzag carbon nanotube (20,0). (b) Electron
diffraction pattern of the nanotube. The odd-indexed layer lines (indicated by arrows) are
in extinction. (c) Overlap of the experimental diffraction pattern and the calculated pattern
(figure 24(a)) [156].

[158–162]. Several forms of deformation can easily occur, and we conder the three simplest
in the following: elliptical nanotube, axial twisting and nanotube ropes.

6.1. Elliptical nanotubes

When the case of nanotubes of elliptical cross-section with major axis a and minor axis b is
considered, cylindrical nanotubes of circular cross-section can be treated as a special class of
elliptical nanotubes. When a = b, it is the case for cylindrical nanotubes of radius r0 = a = b.

In an elliptical carbon nanotube, each helix revolves on the surface of an elliptical cylinder
which is characterized by its major axis a and minor axis b as shown in figure 27. Figure 27(a)
shows schematically the side-view of a setting of electron diffraction where the elliptical
carbon nanotube is tilted with respect to the horizontal plane by an angle β. Comparing with
the kinematical theory of electron diffraction formulated for cylindrical carbon nanotubes, the
analytic expression for the amplitude of electron scattering from an elliptical carbon nanotube
has to take into account the ellipticity of the nanotube. The scattering amplitude for an elliptical
carbon nanotube can be expressed as [163]

F(R, 	, l) =
∑

j

∑
n,m

f η(n, l)Jn(2πr∗R) exp
[
in
(
	∗ +

π

2

)]
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−inϕj +

2π ilzj

c

)
,

(100)
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Figure 26. Calculated electron diffraction pattern of an armchair carbon nanotube (10,10) as a
function of its azimuthal angle when the nanotube is rotated about its axis. Extinction of the
odd-indexed layer lines is indicated by arrows in (d) [156].

where (R, 	, l) denote the cylindrical coordinates in the reciprocal space, (ϕj , zj ) are the
atomic coordinates of the j th atom in the asymmetrical unit cell of the carbon nanotube,
Jn(2πr∗R) is the Bessel function of order n, and n, l, m are all integers satisfying the same
selection rule as for the cylindrical carbon nanotube

l

c
= n

C
+

m

�
, (101)

with C and � being the pitch length and axial distance between neighbouring atoms along the
helix, respectively, and

r∗ =
√

a2 cos2 	 + b2 sin2 	, (102)

tan 	∗ = b

a
tan 	, (103)
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(a)
(b)

Figure 27. (a) Schematic illustrating the relative orientation of an elliptical carbon nanotube when
it is also rotated relative to its major axis by angle φ. (b) Cross-sectional view defining the azimuthal
angle φ in relation with the angle θ defined on a corresponding circle. The dots on the ellipse are
evenly spaced on the perimeter representing the intercepts of atomic helices revolving on the surface
of the elliptical nanotube [163].

and

η(n, l) =
∫

exp[i( 2πlz(θ)

c
− nθ)]√

a2 cos2 θ + b2 sin2 θ
dθ (104)

is a special function.
For a cylindrical carbon nanotube, 	∗ = 	 and r∗ = r0 where r0 is the radius of the

carbon nanotube and η(n, l) becomes a constant.
The selection rule for the elliptical carbon nanotube of chiral indices (u, v) remains the

same as for the cylindrical carbon nanotube since the structural parameters in the axial direction
are not changed by the elliptical deformation.

By taking one helix of the nanotube as a reference (ϕ(0)
0 , z

(0)
0 ), we have the following

rotational and translational shifts for all the helices

ϕ
(0)
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3

(106)

where the superscripts 0 and 1 stand for the two helices within the pair, and the subscript j

ranges from 0 to u − 1 specifying all the u helices in the nanotube, e is the eccentricity of the
elliptical nanotube e =

√
1 − b2/a2, and A[x|e] is an elliptical function which is the inverse

function of the elliptic integral of the second kind E[x|e] [164].
There exist several major differences between the electron diffraction patterns of elliptical

carbon nanotubes and circular carbon nanotubes including: (a) the elliptical nanotubes are
much more anisotropic, i.e. the diffraction intensities vary more strongly with the change in
orientation 	, while the circular nanotubes have much weaker orientational dependence; (b)
upon inclined incidence, the symmetry of the electron diffraction pattern from an elliptical
nanotube may be lower than 2mm, while the latter always has 2mm symmetry [151].
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(a)

(b)

(d)

(c)

Figure 28. (a) Experimental electron diffraction pattern of an elliptical carbon nanotube of
indices (15,7); (b) model structure of an elliptical carbon nanotube (15,7) with its central section
deformed elliptically; (c) calculated electron diffraction pattern of the ellipcal carbon nanotube;
and (d) overlap of the calculated pattern (c) and the experimental pattern (a) showing excellent
agreement [163].

The above theoretical analysis is very useful in analysing the electron diffraction patterns
of deformed carbon nanotubes and accurately determining their atomic structure. Figure 28(a)
is an experimental electron diffraction pattern of an elliptically deformed carbon nanotube.
Nine reflection layer lines show up in the diffraction pattern. By measuring the electron
scattering intensity distribution and the ratios of the spacings of the principal layer lines, we
determined that the nanotube has chiral indices (15,7) with diameter 1.525 nm and helicity of
18.14◦ [163]. Figure 28(b) shows a model structure of single-walled carbon nanotube (15,7)
that has been deformed elliptically. Figure 28(c) displays a simulated electron diffraction
pattern from the model structure with a tilting angle of β = 8◦. As can be seen in the
simulated pattern, the mirror symmetry across the tubule axis has indeed broken due to the
orientation and tilting of the deformed carbon nanotube relative to the incident electron beam.
In figure 28(d) the intensity profile of the calculated electron diffraction intensities are plotted
on the experimental data. The intensity distribution matches very well for all the layer lines
and suggests that the eccentricity of the nanotube is about 0.55 with a tilting angle of about 8◦

relative to the horizontal plane [163].
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(a) (b)

Figure 29. (a) Single-walled carbon nanotube (22,2) being twisted clockwise about its axis;
(b) atomic positions of the twisted nanotube in radial projection. The light-lined rectangle and the
dark-lined parallelpiped are the graphene cut before and after twisting. �x and �y are the atomic
displacements caused by the twisting. C and C∗ are the pitch lengths of the atomic helices before
and after twisting, respectively [163].

6.2. Twisted nanotubes

Axial torsion is another interesting deformation of cylindrical nanotubes. Figure 29(a) shows
the process of twisting a carbon nanotube axially: with one end fixed, the other end is twisted
either in the clockwise direction or in the counterclockwise direction about the tubule axis.
Although energetically this is equivalent to twisting an achiral (either armchair or zigzag)
nanotube in either direction, twisting a helical carbon nanotube about its axis along the helical
lines is energetically easier than twisting it against the helical lines [165]. Assuming that the
cross-section of a twisted carbon nanotube is still circular as shown in figure 29(b), i.e. the
twisting angle is not large enough to cause any buckling of the nanotube, we can consider
the geometry of the twisted carbon nanotube in a sheared two-dimensional graphene lattice
as shown in figure 29(b), where the hexagons have been uniformly deformed. By twisting a
carbon nanotube (u, v) by an angle of �ϑ(u + 2v)/(uM) for the periodicity length of c along
the tubule axis with M being the maximum common divisor of (2u + v) and (u + 2v), the pitch
length of the twisted helices becomes

C∗ = C/(1 + �ϑ/2π), (107)

although the distance between neighbouring atoms along a helix stays the same, i.e.

�∗ = a0 sin(60◦ − α), (108)

where α is the helical angle of the untwisted nanotube and a0 = 0.246 nm is the magnitude
of the basis vectors of graphene. To make the twisted carbon nanotube still have a periodic
structure along the tubule axis, C∗ and �∗ have to satisfy the following condition:

C∗

�∗ = 2(u2 + v2 + uv)

(u + 2v)(1 + (�ϑ/2π))
= p

q
, (109)
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where p and q are integers, and we have converted the helicity angle α into the chiral indices
(u, v) for this nanotube. Equation (109) requires that �ϑ/2π = K1/K2, where K1 andK2 are
all integers. Thus the selection rule for the twisted carbon nanotube can be expressed as

l = (K1 + K2)(u + 2v)n + 2K2(u
2 + v2 + uv)m, (110)

where the periodicity length of the twisted carbon nanotube has been assumed to be

c∗ = uMK2c, (111)

which may not be the true primitive unit cell of the nanotube.
The scattering amplitude for the twisted carbon nanotube can be calculated by considering

the geometric relationships of all the twisted helices in the nanotube as shown in figure 29(b).
Although the carbon hexagons are deformed due to twisting, the total surface area of the
nanotube in radial projection remains unchanged if no buckling occurred during the twisting
process. Therefore a carbon nanotube of chiral indices (u, v) still consists of u pairs of
properly-arranged helices as in the untwisted case. Choosing one pair of helices as a reference
(cf figure 29(b)), the rotational and translational shifts of all the u pairs of helices can be
expressed as

ϕj = 2πja0

Ch

[
cos α − sin α

tan(60◦ − α)

�ϑ

2π

]

zj = −ja0 sin α (112)

where the subscript j ranges from 0 to u − 1. The scattering amplitude for a twisted carbon
nanotube (u, v) is therefore

Fuv(R, 	, l) =
∑
n,m

f χ∗
uv(n, m)γuv(n, m) exp

[
in
(
	 +

π

2

)]
Jn(πdR), (113)

where χ∗
uv(n, m) is a function depending on the nanotube helicity and the detailed bonding

between neighbouring carbon atoms in the twisted hexagons, and

γuv(n, m) = 1 − exp[−2π i(n + mv)]

1 − exp[−2π i(n + mv)/u]
=
{

u, if(n + mv)/u = integer,

0, otherwise.
(114)

Equation (113) is very similar to the scattering amplitude of untwisted carbon nanotubes with
the exception of χ∗

uv(n, m), which only plays a minor role in determining the electron diffraction
intensities.

The diffraction intensity distributions on the principal layer lines l1, l2 and l3 are modulated
by the same Bessel functions as those for untwisted carbon nanotubes, i.e. ignoring the Bessel
functions of higher orders contributing to diffraction intensities on the principal layer lines,
n = v for l1, n = −u for l2, and n = u + v for l3. However, the axial periodicity of a twisted
carbon nanotube (equation (111)) is different from that of the untwisted carbon nanotube,
which results in changes of the ratios of layer line spacings between the principal layer lines.
On the other hand, we can correlate the torsion angle �ϑ with the measured layer line spacings
D1 and D2 in the electron diffraction patterns from a twisted carbon nanotube by

�ϑ

2π
= ςo − ς

ς + v/u
, (115)

where ςo = (2u + v)/(u + 2v) and ς = D1/D2. Since the layer line spacings D1 and D2can
be measured very accurately, a very high accuracy (0.1◦ nm−1) in the measurement of the
torsion angle of a twisted carbon nanotube can be achieved by using the electron diffraction
technique.
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6.3. Carbon nanotube ropes

Another interesting morphology of carbon nanotube bundles is nanotube ropes, where single-
walled carbon nanotubes form a twisted rope in contrast to the raft-like bundles described in
section 4.6. In the configuration of a twisted nanotube rope, each single carbon nanotube is
twisted without lowering the total formation energy substantially and the structural stability
is greatly enhanced compared with the raft-like configuration. On the other hand, each single
nanotube is not only twisted about its axis, it is also twisted about the rope axis. There is still no
experimental data or in-depth discussion available in the literature on the electron diffraction
from such nanotube ropes [166, 167].

7. Handedness of carbon nanotubes

As discussed in section 2, helical carbon nanotubes are enantiomorphic, though the definition
of absolute handedness is rather arbitrary. Successful recognition of the handedness of
a carbon nanotube may assist in exploring the handedness-related properties of carbon
nanotubes [168–172]. When the carbon hexagonal rings are resolved in the scanning tunnelling
microscopy images, the handedness can be revealed directly [90–92]. On the other hand, since
electron diffraction measures the chiral indices accurately, it is of great interest to explore the
possibilities for revealing the handedness of carbon nanotubes using electron diffraction.

7.1. Single-walled carbon nanotubes

The handedness of a nanotube can be assigned by observing the moving directions of the
principal layer lines for a certain twisting direction in the electron diffraction pattern. The
electron diffraction method for measuring the torsion angle presented in section 6.2 can be used
to obtain the handedness of single-walled carbon nanotubes. For example, carbon nanotube
(22,2) is a chiral nanotube and twisting it about the tubule axis in the clockwise direction
is different from twisting it in the counterclockwise direction looking top-down against the
tubule axis as shown in figure 29(a). Figure 30(a) shows an experimental electron diffraction
pattern of an untwisted carbon nanotube (22,2). The simulated electron diffraction pattern
of this nanotube is plotted on the experimental pattern and the compound pattern is given in
figure 30(b), where the layer line spacings D1 and D2 are marked as references. Figures 30(c)
and (d) show the simulated electron diffraction patterns of the nanotube (22,2) twisted in the
counterclockwise and clockwise directions, respectively. It is noticeable that in comparison
with the layer lines from the untwisted carbon nanotube, the principal layer spacing ratio
D1/D2 in figure 30(c) increases due to the repulsive moving directions of the layer lines l1 and
l2, whereas D1/D2 in figure 30(d) decreases because of the attractive moving directions of the
layer lines l1 and l2. However, we can observe that the peak positions of diffraction intensities
on all the layer lines remain the same in both figures 30(c) and (d). Thus by reference to
equation (114), we can derive that the twisting angles of the twisted nanotube in figures 30(c)
and (d) are +1.95◦ nm−1 and −1.95◦ nm−1 defining the plus sign for the counterclockwise
direction, where we have divided the torsion angle by the length of the nanotube.

It is worth mentioning that if the nanotube has an opposite handedness, i.e. left-handedness
for the nanotube (2,22), the diffraction layer lines would move in opposite directions compared
with those for the right-handed nanotube (22,2) under the same twisting direction. This
suggests that by twisting a chiral nanotube, we will be able to detect the handedness of
the carbon nanotube. For example, we can assign the nanotube (22,2) presented above as
right-handed, because the layer lines l1 and l2 in figure 30(c) move away from each other
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(a)

(c) (d)

(b)

Figure 30. (a) Electron diffraction pattern of an untwisted carbon nanotube (22,2). (b)
Simulated electron diffraction pattern of the untwisted carbon nanotube (22,2) plotted on the
experimental pattern. (c) Calculated electron diffraction pattern of carbon nanotube (22,2)
twisted counterclockwise by �ϑ = −1.20◦ nm−1. (c) The same nanotube twisted clockwise
�ϑ = +1.20◦ nm−1. The arrows indicate the direction of shifts of the principal layer lines relative
to the untwisted structure.

when we twist the nanotube in the counterclockwise direction. However, under the same
counterclockwise twisting direction, if the layer lines l1 and l2 move towards each other as
shown in figure 30(d), we can consider the nanotube as left-handed.

Experimental use of this method to obtain the handedness of carbon nanotubes can be
found in [173].

7.2. Multiwalled carbon nanotubes

When there are two shells in a multiwalled carbon nanotube having the same helicity, electron
diffraction can reveal the relative handedness of these two shells. To simplify the discussion
but without loss of generality in principle, we can consider a double-walled carbon nanotube
of two shells of chiral indices (u1, v1) and (u2, v2), diameter d1 and d2 and the same helicity.
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For this configuration, the layer lines will overlap completely. If the two shells also have the
same handedness, the scattering intensities on the principal layer lines l1, l2 and l3 are [174]

I (R, 	, l1) = χ2
0 f 2

{
|u1J−v1(πd1R)|2 + |u2J−v2(πd2R)|2

+2u1u2J−v1(πd1R)J−v2(πd2R) cos

[
(v1 − v2)

(
	 +

π

2

)
+ �ϕ1

]}
, (116)

I (R, 	, l2) = χ2
0 f 2

{
|u1Ju1(πd1R)|2 + |u2Ju2(πd2R)|2

+2u1u2Ju1(πd1R)Ju2(πd2R) cos

[
(u2 − u1)

(
	 +

π

2

)
+ �ϕ2

]}
, (117)

and

I (R, 	, l3) = χ2
0 f 2

{
|u1J−(u1+v1)(πd1R)|2 + |u2J−(u2+v2)(πd2R)|2

+2u1u2J−(u1+v1)(πd1R)J−(u2+v2)(πd2R)

× cos

[
(u1 − u2 + v1 − v2)

(
	 +

π

2

)
+ �ϕ3

]}
, (118)

where χ0 is a constant.


�ϕ1 = 152ϕ0/7,

�ϕ2 = 0,

�ϕ3 = 152ϕ0/7,

(119)

in which ϕ0 is the rotational angle of the inner shell relative to the outer shell.
When the two shells have opposite handedness

I (R, 	, l1) = χ2
0 f 2

{
|u1J−v1(πd1R)|2 + |u2Jv2(πd2R)|2

+2u1u2J−v1(πd1R)Jv2(πd2R) cos

[
(v1 + v2)

(
	 +

π

2

)
+ �ϕ∗

1

]}
, (120)

I (R, 	, l2) = χ2
0 f 2

{
|u1Ju1(πd1R)|2 + |u2J−u2(πd2R)|2

+2u1u2Ju1(πd1R)J−u2(πd2R) cos

[
(u1 + u1)

(
	 +

π

2

)
+ �ϕ∗

2

]}
, (121)

and

I (R, 	, l3) = χ2
0 f 2

{
|u1Ju1+v1(πd1R)|2 + |u2Ju2+v2(πd2R)|2

+2u1u2J−(u1+v1)(πd1R)J(u2+v2)(πd2R)

× cos

[
(u1 + u2 + v1 + v2)

(
	 +

π

2
) + �ϕ∗

3

]}
, (122)

where 


�ϕ∗
1 = 152ϕ0/7,

�ϕ∗
2 = 0,

�ϕ∗
3 = −152ϕ0/7.

(123)
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As can be seen from equations (116)–(118) and equations (120)–(122), the dependence on
the azimuthal angle 	 is different for the two shells having the same handedness (equations
(116)–(118)) and opposite handedness (equations (120)–(122)). For example, the intensities
on layer line l2 have an angular periodicity of 2π/|u2 − u1| when the two shells have the
same handedness. On the other hand, if the two shells have opposite handedness, the angular
periodicity becomes 2π/|u2 + u1|. The different dependence of the scattering intensities on
the azimuthal angle can be used to obtain the relative handedness of the two shells.

Figure 31(a) shows a model structure of a double-walled carbon nanotube composed of two
shells, (18,12) and (12,8) where the two shells have the same handedness. Figures 31(b)–(g)
are the calculated electron diffraction patterns of this structure at various azimuthal angles
where the arrow indicates the observed intensity on layer line l2. Figure 31(h) shows the
dependence of the observed intensity of layer line l2 where the data points corresponding to
figures 31(b)–(g) are also indicated. For the particular structure, the angular periodicity on
layer line l2 is �	 = 2π/6 = π/3.

On the other hand, if the two shells have opposite handedness as shown schematically in
figure 32(a), the angular periodicity would become �	∗ = 2π/30 = π/15. Figures 32(b)–(e)
depict a series of simulated electron diffraction patterns for this configuration at azimuthal
angles 	 = 0 (figure 32(b)), 	 = 3◦ (figure 32(c)), 	 = 6◦ (figure 32(d)) and 	 = 9◦

(figure 32(e)). A plot of the intensity peak on the principal layer line l2 as a function of the
azimuthal angle 	 is displayed in figure 32(f ) where the data points corresponding to the four
simulated electron diffraction patterns are also indicated in the figure.

An in situ experiment to determine the relative handedness of the shells of the same helicity
using the abovementioned method has been recently carried out successfully by rotating a
triple-walled carbon nanotube [175].

Appendix

In a polar coordinate system, the coordinates (r, φ, z) are related to the Cartesian coordinates
(x, y, z) by the following transformation


lx = r cos(φ),

ly = r sin(φ),

lz = z.

(A1)

For the coordinates in reciprocal space, the corresponding equations are


lX = R cos(	),

lY = R sin(	),

lZ = Z.

(A2)

The structure factor in the polar coordinate system is

F(R, 	, Z) =
∫

V (⇀r ) exp(2π i ⇀q · ⇀r )d⇀r

=
∫ +∞

−∞

∫ 2π

0

∫ ∞

0
V (r, φ, z) exp{2π i[rR cos(φ − 	) + zZ]}r dr dφ dz,

=
∫ +∞

−∞

∫ 2π

0

∫ ∞

0
V (r, φ, z) exp[2π irR cos(φ − 	)] exp(2π izZ)r dr dφ dz,

(A3)

and this is a general expression for any object in a polar coordinate system.
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(f)  Φ=30° (g)  Φ=45°

(a) (h)

Figure 31. (a) Atomic structure of a double-walled carbon nanotube where the two shells (18,12)
and (12,8) have the same handedness and same helicity. (b)–(g) Simulated electron diffraction
patterns of the structure at azimuthal angles (b) 	 = 0, (c) 	 = 3◦, (d) 	 = 6◦, (e) 	 = 15◦,
(f ) 	 = 30◦ and (g) 	 = 45◦. (h) Maximum intensity on principal layer line l2 as a function
of the azimuthal angle 	. The rotational periodicity of scattering intensities on this layer line (l2,
enclosed in rectangle) is �	 = 60◦.
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(a) (f)

Figure 32. (a) Atomic structure of a double-walled carbon nanotube where the two shells (18,12)
and (8,12) have the same helicity but opposite handedness. (b)–(e) Simulated electron diffraction
patterns of the structure at azimuthal angles (b) 	 = 0, (c) 	 = 3◦, (d) 	 = 6◦ and (e) 	 = 9◦.
(f ) Maximum intensity on principal layer line l2 as a function of azimuthal angle 	. The rotational
periodicity of the scattering intensities on this layer line (l2, enclosed in rectangle) is �	∗ = 12◦.

Introducing the Bessel function Jn of order n defined by

2π inJn(u) =
∫ 2π

0
exp(iu cos φ + inφ) dφ (A4)

and the following relationships

exp(iu cos φ) =
+∞∑

n=−∞
Jn(u) exp

[
in
(
φ +

π

2

)]
(A5)

J−n(u) = (−1)nJn(u), (A6)
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we can obtain

F(R, 	, Z) =
∑

n

∫ +∞

−∞

∫ ∞

0
V (r, φ, z) exp(in	)

×
{∫ 2π

0

+∞∑
n=−∞

Jn(2πrR) exp

[
in

(
	 − φ +

π

2

)]
dφ

}
exp(2π izZ)r dr dφ dz

=
∑

n

exp

[
in

(
	 +

π

2

)]∫ +∞

−∞

∫ 2π

0

∫ ∞

0
V (r, φ, z)Jn(2πrR)

× exp(−inφ + 2π izZ)r dr dφ dz. (A7)

When the potential V (r, φ, z) has an N -fold rotation axis along the z-direction, i.e.

V (r, φ, z) = V

(
r, φ +

2π

N
, z

)
, (A8)

the Fourier expansion (A4) can be written in the following form

V (r, φ, z) =
∑

n

VnN(r, z) exp(inNφ), (A9)

where

VnN(r, z) = N

2π

∫ 2π/n

0
V (r, φ, z) exp(−inNφ) dφ, (A10)

and the structure factor becomes

F(R, 	, Z) = N

+∞∑
n=−∞

exp

[
inN

(
	 +

π

2

)]∫ +∞

−∞

∫ 2π

0

∫ ∞

0
V (r, φ, z)JnN(2πrR)

× exp(2π izZ) exp(−inNφ)r dr dφ dz. (A11)

If the object is periodic along the z-direction with periodicity c, the Fourier expansion (A4)
can be written as

V (r, φ, z) =
+∞∑

n=−∞

+∞∑
l=−∞

Vnl(r) exp

(
− inφ +

2π ilz

c

)
, (A12)

and we can similarly incorporate the z-components into the relevant equations to obtain the
following expression of the structure factor:

F(R, 	, l) = 1

c

+∞∑
n=−∞

exp

[
in

(
	 +

π

2

)]∫ c

0

∫ 2π

0

∫ ∞

0
V (r, φ, z)Jl(2πrR)

× exp

[
i

(
− nφ +

2πlz

c

)]
r dr dφ dz. (A13)
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