Twistor Space, Amplitudes and No-Triangle Hypothesis in Gravity

University of North Carolina at Chapel Hill

Niels Emil Jannik Bjerrum-Bohr

Includes work in collaboration with

Z. Bern, D.C. Dunbar, H. Ita, W. Perkins, K. Risager and P. Vanhove

Introduction

Outline

Quantum gravity from Perturbation Theory

KLT and spinor helicity formalism Twistor space structure

New techniques for gravity tree amplitudes

Loop amplitudes from Unitarity **N=8 Supergravity** No-triangle hypothesis New insights? .. 2-loops, 3-loops n-loops ..

– Insights from string theory??

Quantum theory for gravity

- Gravity as a theory of point-like interactions
- Non-renormalisable theory!

Dimensionful G_N=1/M²_{planck}

- Traditional belief : no known symmetry can remove higher derivative divergences.. String theory can by introducing new length scale
- Focus: N=8 supergravity maximal supersymmetry

(Cremmer,Julia, Scherk; Cremmer, Julia)

Also cancellations in pure gravity as well..

 $(p_i f \epsilon_j) (\epsilon_i f \epsilon_j)$

Amplitudes

Gravity Trees

Gravity AmplitudesExpand Einstein-Hilbert Lagrangian :Infinitely
many
vertices $\mathcal{L}_{EH} = \int d^4x \left[\sqrt{-g} R \right]$ vertices $g_{\mu\nu} \equiv \eta_{\mu\nu} + \kappa h_{\mu\nu}$

Vertices: 3pt, 4pt, 5pt,..n-pt

Feynman diagrams:

Complicated expressions for vertices!

not attractive...!

$$\begin{aligned} W^{(3)}_{\mu\alpha,\nu\beta,\sigma\gamma}(k_{1},k_{2},k_{3}) &= \kappa \operatorname{sym} \Big[-\frac{1}{2} P_{3}(k_{1} \cdot k_{2} \eta_{\mu\alpha} \eta_{\nu\beta} \eta_{\sigma\gamma}) - \frac{1}{2} P_{6}(k_{1\nu}k_{1\beta} \eta_{\mu\alpha} \eta_{\sigma\gamma}) \\ \mathbf{45 \ terms} &+ \frac{1}{2} P_{3}(k_{1} \cdot k_{2} \eta_{\mu\nu} \eta_{\alpha\beta} \eta_{\sigma\gamma}) + P_{6}(k_{1} \cdot k_{2} \eta_{\mu\alpha} \eta_{\nu\sigma} \eta_{\beta\gamma}) + 2 P_{3}(k_{1\nu}k_{1\gamma} \eta_{\mu\alpha} \eta_{\beta\sigma}) \\ \mathbf{+ sym} &- P_{3}(k_{1\beta}k_{2\mu} \eta_{\alpha\nu} \eta_{\sigma\gamma}) + P_{3}(k_{1\sigma}k_{2\gamma} \eta_{\mu\nu} \eta_{\alpha\beta}) + P_{6}(k_{1\sigma}k_{1\gamma} \eta_{\mu\nu} \eta_{\alpha\beta}) \\ (\text{Sannan}) &+ 2 P_{6}(k_{1\nu}k_{2\gamma} \eta_{\beta\mu} \eta_{\alpha\sigma}) + 2 P_{3}(k_{1\nu}k_{2\mu} \eta_{\beta\sigma} \eta_{\gamma\alpha}) - 2 P_{3}(k_{1} \cdot k_{2} \eta_{\alpha\nu} \eta_{\beta\sigma} \eta_{\gamma\mu}) \Big], \end{aligned}$$

Gravity Amplitudes

KLT relationship (Kawai, Lewellen and Tye)

Momentum prefactors cancel double poles

Simplicity of YM amplitudes!!

Spinor Helicity

Helicity states formalism

Spinor products :

$$\langle i j \rangle = \epsilon^{mn} \lambda_m^i \lambda_n^j \quad [i j] = \epsilon^{\dot{m}\dot{n}} \tilde{\lambda}_{\dot{m}}^i \tilde{\lambda}_{\dot{n}}^j$$

Different representations of the Lorentz group

$$p_{a\dot{a}} = \sigma^{\mu}_{a\dot{a}} p_{\mu}$$

$$p^{\mu}p_{\mu} = 0 \qquad p_{a\dot{a}} = \lambda_a \tilde{\lambda}_{\dot{a}}$$

Momentum parts of amplitudes:

$$q_{a\dot{a}} = \mu_a \tilde{\mu}_{\dot{a}} \quad p_{a\dot{a}} = \lambda_a \tilde{\lambda}_{\dot{a}} \quad 2(p \cdot q) = s_{ij} = -\langle \lambda, \mu \rangle [\tilde{\lambda}, \tilde{\mu}]$$

Spin-2 polarisation tensors in terms of helicities, (squares of those of YM):

$$\begin{aligned} \varepsilon_{a\dot{a}}^{-} &= \frac{\lambda_{a}\tilde{\mu}_{\dot{a}}}{[\tilde{\lambda},\tilde{\mu}]} & \tilde{\varepsilon}_{a\dot{a}}^{+} &= \frac{\mu_{a}\tilde{\lambda}_{\dot{a}}}{\langle \mu,\lambda\rangle} & \varepsilon^{-} \varepsilon^{-} & \text{(Xu, Zhang)}\\ \tilde{\varepsilon}^{+} \tilde{\varepsilon}^{+} & \tilde{\varepsilon}^{+} & \text{Chang)} \end{aligned}$$

Yang-Mills MHV-amplitudes

Gravity MHV amplitudes

 Can be generated from KLT via YM MHV amplitudes.

$$M_{4}^{\text{tree}}(1^{-}, 2^{-}, 3^{+}, 4^{+}) = i \langle 1 2 \rangle^{8} \frac{[1 2]}{\langle 3 4 \rangle N(4)}$$
Anti holomorphic

$$M_{5}^{\text{tree}}(1^{-}, 2^{-}, 3^{+}, 4^{+}, 5^{+}) = i \langle 1 2 \rangle^{8} \frac{\varepsilon(1, 2, 3, 4)}{N(5)}$$
Anti holomorphic
Contributions
- feature in gravity

 $\varepsilon(i,j,m,n) \equiv 4i\varepsilon_{\mu\nu\rho\sigma}k_i^{\mu}k_j^{\nu}k_m^{\rho}k_n^{\sigma} = [ij]\langle jm\rangle [mn]\langle ni\rangle - \langle ij\rangle [jm]\langle mn\rangle [ni]$

• (Berends-Giele-Kuijf) recursion formula

$$M_{n}^{\text{tree}}(1^{-}, 2^{-}, 3^{+}, \cdots, n^{+}) = -i \langle 1 2 \rangle^{8} \times \left[\frac{[1 2] [n - 2n - 1]}{\langle 1 n - 1 \rangle N(n)} \left(\prod_{i=1}^{n-3} \prod_{j=i+2}^{n-1} \langle i j \rangle \right) \prod_{l=3}^{n-3} (-[n|K_{l+1,n-1}|l\rangle) + \mathcal{P}(2, 3, \cdots, n-2) \right]$$

Simplifications from Spinor-Helicity

$$s_{ij} = -\langle \lambda, \mu \rangle [\lambda, \tilde{\mu}]$$
Huge simplifications
$$V_{\mu\alpha,\nu\beta,\sigma\gamma}^{(3)}(k_1, k_2, k_3) = \kappa \operatorname{sym} \left[-\frac{1}{2} P_3(k_1 \cdot k_2 \eta_{\mu\alpha} \eta_{\nu\beta} \eta_{\sigma\gamma}) - \frac{1}{2} P_6(k_{1\nu} k_{1\beta} \eta_{\mu\alpha} \eta_{\sigma\gamma}) + \frac{1}{2} P_3(k_1 \cdot k_2 \eta_{\mu\nu} \eta_{\alpha\beta} \eta_{\sigma\gamma}) + P_6(k_1 \cdot k_2 \eta_{\mu\alpha} \eta_{\nu\sigma} \eta_{\beta\gamma}) + 2P_3(k_{1\nu} k_{1\gamma} \eta_{\mu\alpha} \eta_{\beta\sigma}) - P_3(k_{1\beta} k_{2\mu} \eta_{\alpha\nu} \eta_{\sigma\gamma}) + P_3(k_{1\sigma} k_{2\gamma} \eta_{\mu\nu} \eta_{\alpha\beta}) + P_6(k_{1\sigma} k_{1\gamma} \eta_{\mu\nu} \eta_{\alpha\beta}) + 2P_6(k_{1\nu} k_{2\gamma} \eta_{\beta\mu} \eta_{\alpha\sigma}) + 2P_3(k_{1\nu} k_{2\mu} \eta_{\beta\sigma} \eta_{\gamma\alpha}) - 2P_3(k_1 \cdot k_2 \eta_{\alpha\nu} \eta_{\beta\sigma} \eta_{\gamma\mu}) \right],$$

$$45 \text{ terms} + \text{ sym}$$

$$+ 2P_6(k_{1\nu} k_{2\gamma} \eta_{\beta\mu} \eta_{\alpha\sigma}) + 2P_3(k_{1\nu} k_{2\mu} \eta_{\beta\sigma} \eta_{\gamma\alpha}) - 2P_3(k_1 \cdot k_2 \eta_{\alpha\nu} \eta_{\beta\sigma} \eta_{\gamma\mu}) \right],$$

$$Vanish in spinor helicity formalism$$

$$Gravity: A_3(1^-, 2^-, 3^+)$$

 $\begin{array}{c} \varepsilon^{-} \varepsilon^{-} & \overset{\parallel}{} \\ \varepsilon^{+} \varepsilon^{+} & -i \frac{\langle 1 2 \rangle^{6}}{\langle 2 3 \rangle \langle 3 1 \rangle} \end{array}$

$$\begin{split} & \text{Contractions} \\ & \varepsilon_{a\dot{a}}^{-} = \frac{\lambda_{a}\tilde{\mu}_{\dot{a}}}{[\tilde{\lambda},\tilde{\mu}]} \quad \tilde{\varepsilon}_{a\dot{a}}^{+} = \frac{\mu_{a}\tilde{\lambda}_{\dot{a}}}{\langle \mu,\lambda \rangle} \end{split}$$

Scattering amplitudes in D=4

Amplitudes in gravity theories as well as YM can hence be expressed completely specifying

The external helicies

The spinor variables

Spinor Helicity formalism

Note on notation

We will use the notation:

Twistor space Properties

Twistor space

Transformation of amplitudes ulletinto twistor space (Penrose)

$$ilde{\lambda}_{\dot{a}}
ightarrow i rac{\partial}{\partial \mu^{\dot{a}}}, \quad -i rac{\partial}{\partial ilde{\lambda}_{\dot{a}}}
ightarrow \mu_{\dot{a}}$$

In metric signature (++--): • 2D Fourier transform

(

$$\Phi(\mu) = \int \frac{d^2 \tilde{\lambda}}{(2\pi)^2} \exp(i\mu^{\dot{a}} \tilde{\lambda}_{\dot{a}}) \Phi(\tilde{\lambda})$$

In twistor space : plane wave • function is a line:

Tree amplitudes in YM on degenerate algebraic curves

Collinear and Coplanar Operators

Another way to look at twistor space support..

$$[F_{ijk},\eta] = \langle i\,j\rangle \left[\frac{\partial}{\partial\tilde{\lambda}_k},\eta\right] + \langle j\,k\rangle \left[\frac{\partial}{\partial\tilde{\lambda}_i},\eta\right] + \langle k\,i\rangle \left[\frac{\partial}{\partial\tilde{\lambda}_j},\eta\right]$$

$$\begin{split} K_{ijkl} &= \frac{1}{4} \bigg[\langle ij \rangle \epsilon^{\dot{a}\dot{b}} \frac{\partial}{\partial \tilde{\lambda}^{\dot{a}}_{k}} \frac{\partial}{\partial \tilde{\lambda}^{\dot{b}}_{l}} - \langle ik \rangle \epsilon^{\dot{a}\dot{b}} \frac{\partial}{\partial \tilde{\lambda}^{\dot{a}}_{j}} \frac{\partial}{\partial \tilde{\lambda}^{\dot{b}}_{l}} + \langle il \rangle \epsilon^{\dot{a}\dot{b}} \frac{\partial}{\partial \tilde{\lambda}^{\dot{a}}_{j}} \frac{\partial}{\partial \tilde{\lambda}^{\dot{b}}_{k}} \\ &+ \langle jk \rangle \epsilon^{\dot{a}\dot{b}} \frac{\partial}{\partial \tilde{\lambda}^{\dot{a}}_{i}} \frac{\partial}{\partial \tilde{\lambda}^{\dot{b}}_{l}} + \langle jl \rangle \epsilon^{\dot{a}\dot{b}} \frac{\partial}{\partial \tilde{\lambda}^{\dot{a}}_{k}} \frac{\partial}{\partial \tilde{\lambda}^{\dot{b}}_{i}} - \langle kl \rangle \epsilon^{\dot{a}\dot{b}} \frac{\partial}{\partial \tilde{\lambda}^{\dot{a}}_{j}} \frac{\partial}{\partial \tilde{\lambda}^{\dot{b}}_{i}} \bigg] \end{split}$$

$$F_{ijk}A_n^{\text{tree MHV}}(1....n) = 0$$

$$K_{ijkl}A_n^{\text{tree NMHV}}(1....n) = 0$$

Review: CSW expansion of YM amplitudes

- In the CSW-construction : off-shell MHV-amplitudes building blocks for more complicated amplitude expressions (Cachazo, Svrcek and Witten) Vertex construction \$
- MHV vertices:

spin off of twistor support properties

Twistor space properties for gravity

 Twistor-space properties N=8 Supergravity: More complicated!

Twistor space properties

- For gravity : Guaranteed that Acting with differential operators F and K $F^P M_n^{\rm tree\,MHV}(1\dots n) = 0\,, \qquad {\rm for}\,\, P > 2(n-3)$
- Five-point amplitude. (Giombi, Ricci, Rables-Llana and Trancanelli; Bern, NEJBB and Dunbar)

$$K^2 M_5^{\text{tree googly}} = K K' M_5^{\text{tree googly}} = 0$$

Gravity tree properties

Recursion

(Bedford, Brandhuber,Spence, Travaglini; Cachazo, Svrtec; NEJBB, Dunbar, Ita)

$$\tilde{\lambda}_a \to \tilde{\lambda}_a + z \tilde{\lambda}_b$$

 $\lambda_b \to \lambda_b - z\lambda_a$

$$A(0) = -\sum_{\alpha} \operatorname{Res}_{z=z_{\alpha}} \frac{A(z)}{z}$$

$$\overbrace{\mathbf{x}}^{\mathsf{X}}$$

Gravity loops

General 1-loop amplitudes

No-Triangle Hypothesis

Justified suggestion.....

Consequence: N=8 supergravity same one-loop

Evidence?

structure as N=4 SYM

True for 4pt

n-point MHV

Direct6ptNMHV (IR)evaluation6ptProof

of cuts 7pt evidence

(Green,Schwarz,Brink)

(Bern, Dixon, Perelstein, Rozowsky)

(Bern, NEJBB, Dunbar, Ita)

(NEJBB, Dunbar, Ita, Perkins, Risager)

Factorisation suggests this is true for all one-loop amplitudes

No-Triangle Hypothesis by Cuts

Attack different parts of amplitudes 1) .. 2) .. 3) ..

(1) Look at soft divergences (IR)\$ 1m and 2m triangles

(2) Explicit unitary cuts\$ bubble and 3m triangles

- (3) Factorisation
 - \$ rational terms.

(NEJBB, Dunbar, Ita, Perkins, Risager)

Infrared for loops

Gravity IR loop relation :

$$M_{\epsilon^{-1}}^{\text{one-loop}}(1, 2, \dots, n) = ic_{\Gamma}\kappa^2 \times \left(\frac{\sum_{i < j} s_{ij} \ln(-s_{ij})}{2\epsilon}\right) \times M^{\text{tree}}(1, 2, \dots, n)$$

Compact result for SYM tree amplitudes (Bern, Dixon and Kosower; Roiban Spradlin and Volovich)

No one mass and two mass triangles

(no statement about three mass triangles

No-Triangle Hypothesis (2)
Three mass triangles

$$C_{3} = \sum_{h_{i} \in S'} \int d^{4}l_{1}\delta(l_{2}^{2})\delta(l_{2}^{2})\delta(l_{3}^{2})M((l_{1})^{h_{1}}, i_{m}, \cdots i_{j}, (-l_{2})^{-h_{2}})$$

$$\times M((l_{2})^{h_{2}}, i_{j+1}, \cdots i_{l}, (-l_{3})^{-h_{3}}) \times M((l_{3})^{h_{3}}, i_{l+1}, \cdots i_{m-1}, (-l_{1})^{-h_{1}})$$

$$C_{3} = \sum_{i} c_{i}(I_{4}^{i})_{triple-cut} + d_{3m}(I_{3}^{3m})_{triple-cut}$$

$$d_{3}^{3m}[\{1^{-}, 2^{-}\}, \{3^{-}, 4^{+}\}, \{5^{+}, 6^{+}\}] = 0$$

$$d_{3}^{3m}[\{1^{-}, 2^{-}\}, \{3^{-}, 4^{+}\}, \{5^{+}, 6^{+}\}] = 0$$

$$d_{3}^{3m}[\{1^{-}, 2^{-}\}, \{3^{-}, 4^{+}\}, \{5^{+}, 6^{+}\}] = 0$$

$$d_{3}^{3m}[\{1^{-}, 2^{-}, 4^{+}\}, \{3^{-}, 5^{+}\}, \{6^{+}, 7^{+}\}] = 0$$

$$d_{3}^{3m}[\{1^{-}, 2^{-}, 4^{+}\}, \{3^{-}, 5^{+}\}, \{3^{-}, 6^{+}, 7^{+}\}] = 0$$

No-Triangle Hypothesis (2)

Evaluate double cuts Directly using various methods, Identify singularities.

(e.g. Buchbinder, Britto, Cachazo Feng, Mastrolia)

No-Triangle Hypothesis

(3)

No possibility for rational pieces until 7pt..

Bootstrap methods for QCD should work similarly for

the rational parts of N=8

(Berger, Bern, Dixon, Forde, Kosower; Su, Xiao, Yang, Zhu)

Multiparticle factorisation and other physical limits such as soft, collinear makes huge constrains on the possibilities of having a rational term at (n)pt

No-triangle for multiloops

Three-Loop SYM/ Supergravity

- Three-loop four-point amplitude of N=8 supergravity <u>directly constructed</u> via unitarity.
- The amplitude is ultraviolet finite in four dimensions.
- Degree of divergence in D dimensions at three loop to be no worse than that of N=4 super-Yang-Mills theory. Confirms 'no-triangle hypothesis' for three loops.
 - Remark: Surprising extra cancellations between diagrams which are not just 'triangle-type'..

(Bern, Carrasco, Dixon, Johansson, Kosower, Roiban)

N=8/N=4 UV pattern

Honest calculation/ conjecture

D=11	0	#/ε				
D=10	0(!)	#/ε				
D=9	0	#/ε		Nẹ	8 SUC	GRA
D=8	3/#	#'/ε ² + #"/ε				
D=7		#/ε			N=4 \$	SYM
D=6	0	0				
D=5	0	0	0	+		↓ I
D=4	0	0	0	0		
	L=1	L=2	L=3	L=4	L=5	L=6

String theory limit of n-pt function

 $\begin{array}{ccc} \alpha^3 \$ & \mathbf{0} \\ \tau_2 \$ & \mathbf{0} \end{array}$

Field theory limit of IIA and IIB

string theory on a torus

Two contributions

Limit finite dist between operators (a) Irred Pinch interactions (colliding vertices) (b) Red

$$\mathcal{M}_{5}^{1PI} = C_{5}^{(D)} I_{5}^{(D)} \Big[|\mathcal{A}_{5}^{(1)\infty}|^{2} \Big] + \pi^{-1} C_{5}^{(D+2)} I_{5}^{(D+2)} \Big[\mathcal{A}_{5}^{(2)\infty} \Big]$$
(a)
$$\mathcal{M}_{5}^{1PR} = \lim_{\alpha' \to 0} \kappa_{(D)}^{-2} \mathcal{A}_{5,1PR}^{e/e} = \pi^{\frac{D-8}{2}} \Gamma\left(\frac{8-D}{2}\right) \sum_{i \neq j} t_{(ij)} \prod_{r=1}^{4} \int_{0}^{1} d\nu_{r} Q_{4}(P_{i})^{\frac{D}{2}-4} \delta(\nu_{4}-1)$$
(b)

$$I_n^{(D)}[f(\nu)] \equiv \prod_{i=1}^n \int_0^1 d\nu_i f(\nu_i) Q_n^{\frac{D}{2}-n} \,\delta(\nu_n - 1)$$
$$Q_n(k_i) = \sum_{1 \le i < j \le n} (k_i \cdot k_j) \left[(\nu_i - \nu_j)^2 - |\nu_i - \nu_j| \right]$$

(NEJBB and P. Vanhove) hep-th/0802.0868

$$\mathcal{M}_5^{1PI} = C_5^{(D)} I_5^{(D)} \Big[|\mathcal{A}_5^{(1)\infty}|^2 \Big] + \pi^{-1} C_5^{(D+2)} I_5^{(D+2)} \Big[\mathcal{A}_5^{(2)\infty} \Big]$$

$$M_{5}[1] = C_{5}^{(D)} I_{5}^{(D)} \left[\left| t_{10} \cdot F^{5} - \frac{\pi}{2} \sum_{i \neq j} (h_{i} \cdot k_{j}) G_{F}(\nu_{i} - \nu_{j}) \left(t_{8} \cdot F_{\hat{i}}^{4} \right) \right|^{2} \right] \qquad \uparrow \Sigma \text{ 1m Boxes}$$

$$M_{5}[\nu] = -\pi C_{5}^{(D)} I_{5}^{(D)} \left[\left(t_{10} \cdot F^{5} - \frac{\pi}{2} \sum_{i \neq j} (k_{i} \cdot h_{j}) G_{F}(\nu_{i} - \nu_{j}) \left(t_{8} \cdot F_{\hat{i}}^{4} \right) \right) (H \cdot K_{[5]}) \right] ^{2} \Sigma \text{ 1m Boxes}$$

 $M_{5}[\nu^{2}] = \pi^{2} C_{5}^{(D)} (t_{8} \cdot F_{\hat{i}}^{4}) (t_{8} \cdot F_{\hat{j}}^{4}) I_{5}^{(D)} \Big[(H \cdot K_{[5]}) (\bar{H} \cdot K_{[5]}) \Big] \qquad \uparrow \Sigma \text{ 1m Boxes } + \Sigma \text{ Triangles}$ Potential dangerous terms

$$\begin{split} \mathcal{R}^{1PI} &= -I_{5}^{(D)} \Big[(k_{4} \cdot K_{[5]})(k_{5} \cdot K_{[5]}) \Big] \\ &- \frac{1}{2} I_{5}^{(D)} \Big[(\sum_{i=1}^{5} (k_{5} \cdot k_{i}) \operatorname{sign}(\nu_{5} - \nu_{i}))(k_{4} \cdot K_{[5]}) \Big] + (4 \leftrightarrow 5) \\ &- \frac{1}{4} I_{5}^{(D)} \Big[\sum_{i,j=1}^{5} (k_{5} \cdot k_{i}) \operatorname{sign}(\nu_{5} - \nu_{i})(k_{4} \cdot k_{j}) \operatorname{sign}(\nu_{4} - \nu_{j}) \Big] \\ &- (k_{4} \cdot k_{5}) I_{5}^{(D+2)} [1] \\ \mathcal{R}^{1PR} &\equiv \lim_{\alpha' \to 0} \lim_{4 \to 5} \mathcal{R} = -(k_{4} \cdot k_{5}) I_{4}^{(45)} [1] \\ Integrals are given as: \\ I_{n}^{(D)} [f(\nu)] &\equiv \prod_{i=1}^{n} \int_{0}^{1} d\nu_{i} f(\nu_{i}) Q_{n}^{\frac{D}{2} - n} \delta(\nu_{n} - 1) \\ I_{5}^{(D)} [(k_{4} \cdot K_{[5]})(k_{5} \cdot K_{[5]})] &= (k_{4} \cdot k_{5}) I_{5}^{(D+2)} [1] \\ \text{Sum over orderings} \\ &+ \frac{1}{2} I_{5}^{(D)} \Big[(\sum_{i=1}^{5} (k_{5} \cdot k_{i}) \operatorname{sign}(\nu_{5} - \nu_{i}))(k_{4} \cdot K_{[5]}) \Big] + (4 \leftrightarrow 5) \\ &+ \frac{1}{4} I_{5}^{(D)} \Big[\sum_{i,j=1}^{5} (k_{5} \cdot k_{i}) \operatorname{sign}(\nu_{5} - \nu_{i}))(k_{4} \cdot k_{j}) \operatorname{sign}(\nu_{4} - \nu_{j}) \Big] \\ &+ (k_{4} \cdot k_{5}) I_{4}^{(45)} [1] \end{split}$$

Now cancellations

Conclusion: no triangles from Irred part of amplitude by cancellations of longitudinal modes no triangles from Red part of amplitude by supersymmetry

Explainations + things to do

No-triangles

String based rules • Field theory limit of string theory used to generate results.

Hint:

Gauge symmetry

+ crossing symmetry ! Link to cancellations at 1-loop and trees

- Further investigations no-triangle hypothesis
 - 5pt ! 6pt and higher. (String based rules useful)
 - Gauge symmetry cancellations at multi-loop level

Longitudinal modes

(Bern, Carrasco, Forde, Ita, Johansson and Arkani-Hamed and Kaplan)

Conclusions

- More perturbative calculations of loop amplitudes
 \$ helpful to understand cancellations...
- Will theories with less supersymmetry have similar surprising cancellations??

According to string based analysis most of cancellations are in the Irred part of amplitude

KLT : Gravity ~ (Yang Mills) x (Yang Mills')
 seems to play some role (even at loop level)
 although not critical for observed cancellations

Conclusions

- The calculation of gravity amplitudes benefit hugely from the use of new techniques developed for gauge theories.
- Both recursion and MHV –vertex formulations for the calculation of gravity amplitudes exist.
- The perturbative expansion of N=8 seems to be surprisingly simple and very similar to N=4 at one-loop. At three loop no worse UV-divergences than N=4!
- This may have important consequences .. (Berkovits)
 Hints from String theory?? Explaination ??? (Green, Russo, Vanhove)

• Perturbative finite / Non-perturbative completion??? (Abou-Zeid, Hull and Mason) Twistor-string theory for gravity?? – likely if perturbative finiteness holds

> Mass-less modes with non-perturbative origin?? (Schnitzer) (Green, Ooguri, Schwarz)