The Kerr/CFT Correspondence Holography for Real World Black Holes

Tom Hartman Harvard University

0809.4266 with Guica, Song, and Strominger 0811.4393 with Murata, Nishioka, and Strominger + work in progress with Song and Strominger

> UNC February 19, 2009

Holography and Black Holes

Overview Asymptotic Symmetries Thermodynamics Applications & More

Motivation 1: BH Information Paradox

- 1960s: Black Hole "Mechanics"
- 1970s: Hawking radiation / Thermodynamics
 - BH evolution is non-unitary in effective field theory.
- 1990s: AdS/CFT
 - Dual CFT description is clearly unitary

Conclude: The low energy description of string theory / quantum gravity is not what it seems, i.e. local effective QFT + general relativity.

Holography and Black Holes

Overview Asymptotic Symmetries Thermodynamics Applications & More

Motivation 2: Observations of Black Holes

- Holography has led to a better understanding of black holes in string theory (SUSY, extra dimensions, etc.)
- But what can we learn about real-world black holes observed in the sky?

Kerr Black Holes

- 4d rotating black hole
- Extremal limit: $J = M^2$

• GRS 1915+105: $J \sim .99 M^2$

McClintock et al. 2006

• Bekenstein-Hawking Entropy $S_{\text{ext}} = \frac{\text{Area}}{4} = 2\pi J$

• Main Result

Near the horizon of an extremal Kerr black hole, any consistent theory of quantum gravity is dual to a 2D conformal field theory.

Central charge: c = 12 J

- Derivation: states transform under a Virasoro algebra (ie in representations of the 2d conformal group)
- Applies to astrophysical black holes (and more)
- Things we don't need
 - Charge
 - Anti de Sitter space (AdS)
 - Extra dimensions
 - Supersymmetry
 - String theory

- Overview
- Asymptotic Symmetries
- Entropy
- Generalizations and applications
 - Charge
 - Anti de Sitter space (AdS)
 - Extra dimensions
 - Supersymmetry
 - String theory

- Explains every entropy calculation in string theory, eg entropy of 5d black holes Strominger, Vafa '95
- But, complexities of string theory are not needed

Strominger '97

 Brown & Henneaux ('86) showed quantum gravity on AdS₃ is dual to a CFT with central charge

$$c=rac{3\ell}{2G}$$
 $\ell=\operatorname{AdS\ radius}_{G=\operatorname{Newton\ constant}}$

• Method: Asymptotic Symmetry Group (ASG)

Near horizon extreme Kerr (NHEK)

Overview Asymptotic Symmetries Thermodynamics Applications & More

Near horizon limit:

$$ds^{2} = 2J\Omega^{2} \left(-r^{2}dt^{2} + \frac{dr^{2}}{r^{2}} + d\theta^{2} + \Lambda^{2}(d\phi + rdt)^{2} \right)$$
Bardeen, Horowitz '99

$$\Omega^2, \Lambda^2 =$$
functions of θ
 $\phi \sim \phi + 2\pi$

Isometries: $U(1)_L$ rotating ϕ $SL(2, R)_R$ acting on the AdS_2

 \star Asymptotic Symmetry Group [example: U(1) gauge theory]

 $ASG = \frac{Allowed symmetries}{Trivial symmetries}$

 \star "Allowed" = obeying the boundary conditions

 \star "Trivial" = corresponding charge vanishes

 \star Find allowed diffeos:

$$\begin{aligned} \zeta_t &= \partial_t \\ \zeta &= \epsilon(\phi) \partial_\phi - r \epsilon(\phi) \partial_r \end{aligned}$$

 \bigstar Generators ζ_n with $\epsilon_n = e^{in\phi}$ satisfy a Virasoro algebra,

$$i\{\zeta_m, \zeta_n\}_{L.B.} = (m-n)\zeta_{m+n}$$

★ Associated charges $Q_n(g_{\mu\nu})$ are boundary integrals $Q(\zeta,g) = \int_{\partial\Sigma} k[\zeta,g]$ Determined by action

★ Supplemental boundary condition $M^2 = J$ (extremality)

Central charge

Overview Asymptotic Symmetries Thermodynamics Applications & More

 \bigstar Compute Dirac brackets

$$\{Q_m, Q_n\}_{D.B.} = \delta_n Q_m$$

 \bigstar Result is the Virasoro algebra,

$$i\{Q_m, Q_n\}_{D.B.} = (m-n)Q_{m+n} + \frac{c}{12}(m^3 - m)\delta_{m+n}$$

 \Rightarrow quantum gravity on NHEK is holographically dual to a 2d CFT with

$$c = 12 J$$

GRS 1915+105 $\rightarrow c \sim 10^{79}$

Outline

Overview Asymptotic Symmetries Thermodynamics Applications & More

- Overview 🖌
- Asymptotic Symmetries
- Entropy
 - Cardy formula

$$S = \frac{\pi^2}{3}cT$$

Generalizations and applications

 \star At extremality, first law of thermodynamics becomes

$$0 = T_H dS = dM - \Omega_H dJ$$

 \star So define conjugate potential for extremal variations

$$dS = \frac{dJ}{T_L}$$

 \star For Kerr,

$$S = 2\pi J \to T_L = \frac{1}{2\pi}$$

 \star Quantum state of a field on extreme Kerr has density matrix

$$\rho = e^{-\hat{J}/T_L}$$

Plug central charge and temperature

$$c_L = 12J$$
$$T_L = \frac{1}{2\pi}$$

into the Cardy formula

$$S_{CFT} = \frac{\pi^2}{3} c_L T_L$$

$$S_{CFT} = \frac{2\pi J}{\hbar} = \frac{\text{Area}}{4} = S_{macro}$$

 \star If we assume

$$c_R = c_L = 12J$$

then the Cardy formula gives the correct near extremal entropy,

$$S_{CFT} = 2\pi J + 2\pi \sqrt{\frac{c_R}{6}E_R} + \cdots$$

★ Summary: We have only found the chiral left half of the CFT, but there is evidence for right-movers which account for the entropy away from extremality

- Overview
- Asymptotic Symmetries
- Entropy
- Generalizations and applications

What can we compute?

Other black holes

Overview **Asymptotic Symmetries** Thermodynamics Applications & More

- Guica, TH, Song, Strominger • 4d Kerr
- Higher dimensions Lu, Mei, Pope
- various papers Asymptotic AdS
- Charge TH, Murata, Nishioka, Strominger
- String theory (D0-D6, D1-D5, NS5) Azeyanagi, Ogawa, Terashima and Supergravity Nakayama Chow, Cvetic, Lu, Pope

Lu, Mei, Pope, Vazquez-Poritz Chen. Wang

Greybody Factors

Overview Asymptotic Symmetries Thermodynamics > Applications & More

★ Extreme Kerr has $T_H = 0$, but it decays via superradiance into modes

$$\Phi \sim e^{im\phi - i\omega t} S_{\ell}(\theta) R(r)$$

with

 $0 < \omega < m \Omega_H$

For small ω ,

Decay rate =
$$\Gamma_{\ell}(\omega) \sim (\omega - m\Omega_H)^{2\ell+1}$$

 \star This is a two-point function in the CFT

$$\Gamma \sim \int e^{-i\omega_R x^+ - i\omega_L x^-} < \mathcal{O}\mathcal{O} >$$

similar to: Maldacena, Strominger '97

• What about large frequency?

$$\Gamma = \frac{\sinh^2 2\pi\delta}{\cosh^2 \pi (m-\delta) + \cosh^2 \pi (m+\delta) + 2\cos 2\pi\sigma \cosh \pi (m+\delta) \cosh \pi (m-\delta)}$$

 $\delta \equiv$ function of $m, \, \ell, \, M$

- Gravity: Teukolsky and Press 1974
- CFT: work in progress! with W. Song and A. Strominger

• Summary: Gravity on extreme Kerr is a CFT.

- Nothing exotic is necessary (but exotic black holes work too)
- Applies to astrophysical black holes, eg GRS 1915+105

Open questions

- Beyond extremality
- What can we calculate with the CFT?
 - greybody factors?
 - astrophysics (accretion, X-ray emission, etc.)?

Wide open questions

- What is the CFT?
- What/where are the microstates?

★ The zero mode of $SL(2,R)_R$ is

$$\zeta_0 = \partial_t$$

 \star Writing this in terms of the original Kerr coordinates suggests

$$Q_0 \sim M^2 - J \equiv E_R$$

 \star If we assume

$$c_R = c_L = 12J$$

then the Cardy formula gives the correct near extremal entropy,

$$S_{CFT} = 2\pi J + 2\pi \sqrt{\frac{c_R}{6}E_R} + \cdots$$

★ Summary: We have only found the chiral left half of the CFT in Kerr/CFT, but we suspect that there are also right-movers which account for the entropy away from extremality

- For Kerr/CFT ("quantum gravity on NHEK is a CFT"), only assumption is:
 - A consistent UV completion of quantum gravity on NHEK exists
- For entropy, using the Cardy formula assumes:
 - Modular invariance
 - Sufficient but not necessary condition:

$$T \gg c$$
 (ie, $\frac{1}{2\pi} \gg 10^{79}$)

Uh-oh.

Same thing happens in string theory, but is explained by highly twisted sectors. Does something similar happen here? Maybe – the mass gap is very small ~ 1/M³. This suggests an effective description with small c, large T. More on this later.

 \star 5D 3-charge black hole

$$S = 2\pi\sqrt{n_1 n_2 n_3}$$

★ String theory U-duality changes c, T with $S \propto cT$ fixed

 \star 5d Kerr (or 4d Kerr-Newman) has near horizon isometries

 $SL(2,R)_R imes U(1)_\phi imes U(1)_\psi$ Th, Matrix $U(1)_\psi$

TH, Murata, Nishioka, Strominger

Lu, Mei, Pope

★ Two consistent choices of boundary conditions: First choice: $U(1)_{\phi} \rightarrow$ Virasoro with central charge

 $c_{\phi} \sim J_{\phi}$

▶ Second choice: $U(1)_{\psi} \rightarrow \text{Virasoro with central charge}$

 $c_\psi \sim J_\psi$

 \star Either choice gives the correct entropy!