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ABSTRACT 
The topbottom contrast effect which has been observed in dark-field images of 

aperiodic surface detail and which was discussed in Part I is shown to arise as a 
result of N-beam refraction reversal in one or more of the important Bloch wave 
components, formed by high-energy transmission electron diffraction. The effect is 
shown to arise in two-beam as well as N-beam diffraction. In particular, the zero- 
contrast condition, whereby the contrast from one or other surface is suppressed, 
and found experimentally in Part I, is found to arise as a consequence of a finite- 
crystal Bloch wave degeneracy. 

0 1. INTRODUCTION 
The specialised development of the dynamic theory for application in electron 

microscopy is not particularly suited to the calculation or understanding of scattering 
from finite polyhedral crystals or crystals with three-dimensional aperiodic features. 
This is because the two most used treatments-physical optics (Cowley and Moodie 
1957) and Bloch wave expansion (Bethe 1928, Fujimoto 1959Fassume plane-parallel 
boundary conditions and infinite periodicity respectively from the outset. 

Dynamic scattering by crystals finite in three dimensions has usually been treated as 
a separate subject and directed towards interpreting diffraction fine structure rather 
than the real-space image. Thus Kato’s (1952) analysis of the two-beam diffraction fine 
structure was made for isolated crystal wedges. This treatment permits a comparison 
with diffraction observations (for example Cowley, Goodman and Rees (1957)), 
provided that the diffraction spot components are treated as discrete points, but is not 
capable of yielding microscope contrast for the line boundaries separating 
neighbouring crystal faces in projection, since diffuse scattering and coherent 
interference are explicitly excluded. Fujimoto’s (1965) finite-crystal treatment for 
N-beam diffraction did include diffuse scattering but was applied only to the case of a 
spherical crystal, without solving the problem of polygonal boundary conditions. 

The aim of the present paper is to extend Kato’s treatment to allow interpretation of 
dark-field microscope contrast obtained from polygonal crystals, including the t o p  
bottom contrast effect (Goodman and McLean 1976), and further to provide a basis for 
understanding the more recent imaging of surface steps by high-resolution dark-field 
microscopy which was presented in Part I in the present series (Goodman and Warble 
1987). 
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206 P. Goodman et a/. 

5 2. GEOMETRIC OPTICS 
Figure 1 shows the passage of parallel illumination through a refracting object of 

triangular cross-section. The post-object planes corresponding to negative and positive 
defects of focus, Af- and Af+, are seen to give dark and bright images of the apex 
respectively, for both orientations (apex up and apex down) of the triangle. Figure 1 
serves to show the optical origin of apex contrast in out-of-focus microscope images 
without resorting to diffraction. 

Introducing diffraction, even kinematically, allows us access to the crystal shape 
transform in the vertical direction, so that by changing the excitation error [ from 
positive through zero to negative values we must generate a topbottom effect, at least 
in phase, in the diffracted beam (Goodman and McLean 1976). Further interpretation 
of topbottom reversal, in intensity, has been given recently in qualitative form by 
Fujimoto and Goodman (1988) using the weak-coupling approximation. It is now of 
interest to find the simplest exact dynamical scattering solution which predicts this 
observation and, as a first step, to re-examine the original two-beam solution of Kato. 

4 3. EXTENSION OF urn's THEORY 
In Kato's (1952) paper the diffraction-doublet fine-structure produced by 

individual crystal wedge segments of the finite-MgO-crystal cube were treated 
independently. By allowing beams transmitted through neighbouring crystal segments 
to interfere coherently in an image plane this unnecessary restriction can be removed, 
and the possibility of topbottom contrast explored, using the concept of contrast 
inversion illustrated in fig. 1. 

Figure 2 shows the two-beam dispersion surface constructions for diffraction from a 
triangular crystal cross-section for the two cases of apex up and apex down, with the 
resulting emerging vacuum wave-vectors KO and K ,  for both positive and negative 
excitation error ([ > 0 and [ -c 0). The results given in fig. 2 show that, while inversion of 
the sign of excitation error leads to an inversion of contrast in both beams, only the 

Fig. 1 

A f -  

A f +  

Ray optics formation of negative and positive defect-of-focus images for a positively refracting 
prism. 
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Topbottom N-beam phase contrast. Part I I  21 1 

diffracted beam G exhibits a contrast inversion with inversion of the crystal about the 
axis perpendicular to the page; that is only the G beam exhibits a topbottom effect, in 
agreement with observation (Goodman and McLean 1976). The analysis shows that 
this effect is attributable to Bloch wave 2. Bloch wave 1 has invariant optical properties 
with respect to the sign of the excitation error [. Since this Bloch wave, which peaks on 
atom sites, is more heavily absorbed, an effect arising from Bloch wave 2 should be 
observed at moderate crystal thicknesses. In addition, a relative change in position 
occurs in the fine structure with changing cg. The results, summarised in the table, show 
that Bloch wave 2 components move from inner to outer position in the array at large 
negative values of [. 

An interesting point which arises from the inversion of Bloch wave 2 with cis that at 
a particular value (not necessarily c =0) the two components, from left- and right-hand 
crystal facets, emerge parallel, corresponding to coincident positions in the fine 
structure. This gives rise to a 'zero-contrast' condition where contrast for the crystal 
edge will be zero for this Bloch wave irrespective of focus value A$ 

This behaviour carries over into the zone axis case. Blume (1966) showed that, at the 
[i 111 zone axis, symmetry reduces the seven-beam to a two-beam dynamic interaction. 
This reduction, which in the vicinity of the zone is sensitive to the exact orientation and 
from observations is effectively two- or three-beam in character, simplifies the analysis. 

Fine Structure i 
positive 

t 

t' 
L1 42 
0 0 

RZ R, 
0 0 

0 0 .  

I negative 

Change in the relative disposition of fine-structure components as a function of excitation error C, 
derived from the construction in figs. 2(a) and (b) over an extended range. Fine- 
structure arrays for the G beam are shown diagrammatically in the second column, for 
increasingly negative values of from top to bottom. R,, L,, R, and L, have the same 
meanings as in fig. 2. 
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212 P. Goodman et d. 

Figure 3 shows diagrammatically the relevant symmetry-reduced dispersion surface 
constructions in simplified and schematic form for the combinations of crystal 
orientation and excitation error sign as in fig. 2. Only a one-third segment of a [111]- 
oriented MgO cube needs to be considered since the crystal has trigonal symmetry in 
this orientation. This segment has two neighbouring facets forming an apex on either 
the entrance or the exit face, labelled e and a respectively in the upper diagrams of each 
part of the figure. Diffraction fine structure is derived for the H (220) beam in each case. 
Figures 3 (a) and (c) illustrate the exact [ 11 13 zone-axis orientation for which rzzo is 
negative, while figs. 3 (b) and (d) represent the situation holding at a second orientation, 
depicted in fig. 4, of a simultaneous five-beam excitation, for which rzzO is positive. 
Appropriate choice of the parameter V,& causes the 'zero-contrast' condition to 
appear in both orientations, in association with the opposite sign of excitation error for 
the beam H. Thus fig. 3 (a) shows this condition arising in Bloch wave 2 (assumed to be 
the strongest Bloch wave), owing to coincidence of the waves from faces eL and eR. In 
fig. 3(b)  these two waves (now from faces aL and aR) are separated by refraction. 
Similarly, figs. 3 (c) and (d) show this situation in reverse, since the diffraction space or 
ray form of reciprocity (Pogany and Turner 1968) relates figs. 3 (a) and ( d )  and figs. 3 (b) 
and (c) with respect to the H beam. The lack of complete equivalence is shown as a 
difference in slope of the intersected H-beam vacuum sphere within each of the near- 
equivalent pairs. This illustrates the point that, in order to obtain fine-structure (and 
dark-field image) equivalence, both reciprocal-space (Pogany and Turner 1968) and 
real-space(Cow1ey 1969) forms of reciprocity need to be invoked. Thus, for an inversion 
of the crystal, a change in excitation error sign needs to be combined with an inversion 
of microscope optics, achieved by changing from transmission electron microscopy to 
scanning transmission electron microscopy (or vice versa) to obtain the reciprocity- 
related wavefunction. 

$4. COMPARISON WI?I EXPERIMENT 
Figure 3 predicts a topbottom effect arising in the H-beam dark-field image as a 

consequence of the fine-structure splitting and coalescing for Bloch wave 2. These 
predictions can be followed by electron diffraction and microscopy of the MgO[ 1 111 
cube. Experimental observations were made using a JEOL lOOCX side-entry electron 
microscope. Figure 5 (a) shows the diffraction pattern from MgO cube in near-[ 11 11 
orientation. The six 220-indexed reflections show trigonal fine-structure splitting. At 
low magnifications (fig. 6(0)) each fine-structure pattern appears to be composed of 
three bright dots at the comers of a triangle. These dots may be considered as the 
almost-superimposed components of the Bloch wave 2 fine structure, corresponding to 
the case in fig. 3 (a). The separated dots then correspond to the dispersed case in fig. 3 (b). 
This simplified interpretation is shown schematically in fig. 5. In fig. 6 ( b )  the 
enlargement of one fine-structure formation shows that the actual distribution is 
somewhat more complicated, with additional fine-structure components along the 
sides of the triangle. Additionally, the diffraction pattern was taken with an 
unavoidable slight deviation from the exact [l 1 13 setting. 

Figure 7 shows the equivalent dark-field images from a 220-indexed reflection with 
the orientation very close to [l 1 11. The sequence of three images are for substantial 
negative, almost zero and substantial positive defects of focus in figs. 7 (a), (b) and (c) 
respectively. In this sequence it is seen that one of the trigonally disposed set of crystal 
surface edges gives almost zero contrast at all values of defocus, that is the pendelllisung 
fringes continue without intensity change through the 120" angle; these were later 
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214 P. Goodman et al. 

.'.\ 

(d ) 
- 2H 

Two-dimensional representation of the symmetry-reduced diffraction from the three- 
dimensional cube segment shown: +, Laue point; 0, origin of H-beam wave-vectors; 
. . . . . . . , vacuum spheres; ---, crystal spheres; -, dispersion surface; ----, entrance 
(e) surface normal; ---, exit (a) surface normal. (aHd) show the four cases of apex up 
and apex down for (a),@) orientations of exact zone-axis orientation (IH negative) and 
(b), ( d )  the complementary orientation of simultaneous excitation of five reflections (IH 
positive), which is depicted in fig. 4. 
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Topbottom N-beam phase contrast. Part II 215 

Fig. 4 

Diagram showing Laue circle around the 220-indexed G beam for the second complementary 
orientation in fig. 3. 

Fig. 5 

T 

Idealised representation of the triangular fine structure in fig. 6(b). B and T represent the non- 
collinear displacements involved in the three-dimensional interpretation of fig. 3 with 
respect to Bloch wave 2. The near-coalescence for waves emerging from one crystal 
surface and the finite dispersion for the reverse surface are represented by the square 
brackets T and B respectively. 

identified as top-surface edges by rotating the specimen and observing topbottom 
parallax. Then, the complementary bottom-surface contrast goes from dark through 
zero to bright enhancement, at the trigonal[lOO]-directed edge lines, in the sequence 
fig. 7 (a), (b), (c). Pendeflbsung fringes are still present along these lines but are phase 
shifted for Af#O; that is in fig. 7(c) with Af positive the first bright fringe is shifted 
towards the vacuum edge. This shift is expected from the geometry of fig. 1; since the 
left- and right-hand image shift vectors are perpendicular to this line of contrast and the 
projected wedge shape is triangular, the eflectioe crystal thickness undergoes a jump 
from zero to a finite value along this line. The zero-contrast and finite contrast 
behaviour seen in the dark-field images are in agreement with the dispersion surface 
predictions given from fig. 3. 

fj 5. APPLICATION TO HIGH RESOLUTION 
In this paper we have set out to explain the origin of topbottom phase contrast in 

N-beam diffraction, and especially to explain phenomena associated with high- 
resolution dark-field images of surface structures as described in Part I. In this latter 
study, both types of topbottom contrast effect discussed above were observed, with 
different diffraction conditions, that is both black-to-white contrast reversal with 
change in excitation error sign (Part I, fig. 5), and the complete suppression of contrast 
from one or other surface for one sign of excitation error (Part I, fig. 6(b)). 

From the analyses given above, we find that both these topbottom phenomena- 
contrast reversal and contrast disappearance-can be identified for low-magnification 
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216 P. Goodman et al. 

Fig. 6 

Diffraction pattern from a [l 111-oriented MgO cube, (a) complete pattern, with one 220-indexed 
reflection encircled; (b) encircled reflection from (a) enlarged. 
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218 P. Goodman et al. 

Dark-field images of the cube giving the pattern of fig. 6. (a), (b) and (c) are taken with Af negative, 
zero and positive respectively. The [ loO]directed cube edge marked T in the images has 
been identified as located on the top or beam-entry side of the crystal. 

images treated as the Fourier transform of the diffraction fine structure. The 
importance of diffuse scattering generated by the specific surface detail being imaged 
becomes of increasing relevance at higher magnifications. To generalise the results 
obtained from a Kato-type description based on discrete diffraction fine-structure 
components, it is only necessary to allow streaks of appropriate structure to replace 
spots in the fine structure. The arguments used here are then not materially altered; 
where previously we had an interchange of L and R spots we now have a reversal of a 
Fresnel fringe extending continuously between the former spot positions, for a 
particular Bloch wave index. 

Using the terminology in Part I (eqn. (2)), the wavefunction at a point x, y of the 
dark-field image is given by 

Yut’= <s.lQls,>, (1) 

where S, and S, are integrals over exit and entrance surfaces respectively and Q is the 
bulk crystal operator. The ith Bloch wave component is then 

with 

S,= f, if,exp(-iks)ds. 

The Fresnel integral S, is non-zero owing to the finite scattering power f, into the small- 
angle scattering regime of local surface structure at points s = sl. The Fresnel fringe has 
a finite width at a finite depth 6, which can then be taken as the initial condition for Q. 
This artificial division of depth into surface and bulk, which is needed for the formalism 
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Top-bottom N-beam phase contrast. Part I I  219 

01 eqn. (I), allows us to estimate a minimum crystal thickness for which a topbottom 
effect is likely to be detectable. Setting a resolvable fringe width at 0.5 nm leads to a 
minimum depth of around 20 nm for 200 kV electrons required to achieve useful t o p  
bottom differentiation. 

Finally, attention needs to be given to the situation holding when surface steps have 
vertical faces which are almost parallel to the incident beam direction. This situation 
occurs frequently, for example, in examining steps in MgO surfaces at high resolution 
(Part I). In this case the forward-scattering small-angle approximation is no longer 
valid; as in low-energy electron diffraction and reflection high-energy electron 
diffraction, 90" incidence, whereby a significant amount of energy is lost to the forward- 
diffracted beam, can occur with the onset of evanescent propagation. From a very 
simple analysis, this condition will occur for steps on the entrance face only and will be 
accessed for positive rather than negative values of excitation error for reflections near 
the MgO[001] zone axis. In this case, one would expect defect or black-line contrast to 
occur at vertical-step sites in the dark-field image. This mechanism may well be 
important in enhancing contrast from entrance-surface detail at high resolution; a 
more complete and numerical evaluation would be needed to determine the relative 
importance of 'surface resonance' to the observed topbottom contrast enhancement. 

0 6. CONCLUSIONS 
From the above scbiions, we find that the theory can be developed at two levels, that 

is that involving ray optics and with neglect of Fresnel diffraction and at the better 
approximation required by high-resolution microscopy (Part I), to allow for Fresnel 
diffraction from surface apices. The change to considering diffuse scattering involves no 
additional theoretical principles, but the simpler approach in which this is neglected 
implies that the ray form of reciprocity (Pogany and Turner 1968) applies with 
sufficient approximation to the dark-field micrographs. This is seen from experimental 
evidence to be true at very low magnifications. At higher resolutions the more complete 
form which includes Fresnel optics reciprocity (Cowley 1969) is seen to be operative in 
removing any equivalence between reversing excitation error sign and inverting the 
crystal in the same instrument. 

The present analysis differs from earlier interpretations (e.g. Part I) in being an 
accurate N-beam treatment to the first order; that is the approximation has been to 
neglect weak-beam interactions but to include interactions between the main diffracted 
beams using symmetry reduction at the zone-axis setting. With this approximation, the 
zero-contrast effect applying to one surface rather than the other can be interpreted in 
terms of a finite-crystal Bloch wave degeneracy. 

The present discussion is valid only with respect to the forward-scattering (small- 
angle) approximation. Further consideration has to be given to include large-angle 
diffuse scattering from vertical crystal facets. However, it is interesting to note 
that progress this far is possible because of the present-day confidence in the 
applicability of the Fresnel formalism to high-voltage electron microscopy within the 
forward-scattering approximation. At the time of the initial theory (Kato 1952), lack of 
accumulated data confirming the validity of this approximation, which allows simple 
incorporation of nonplanar boundary conditions (particularly those relating to surface 
having discontinuities in gradient), was not available. 
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