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Electron diffraction intensities from cylindrical objects can be conveniently analyzed
using Bessel functions. Analytic formulas and geometry of the diffraction patterns
from cylindrical carbon nanotubes are presented in general forms in terms of structural
parameters, such as the pitch angle and the radius of a tubule. As an example the
Fraunhofer diffraction pattern from a graphitic tubule of structure [18,2] has been
simulated to illustrate the characteristics of such diffraction patterns. The validity of the
projection approximation is also discussed.

I. INTRODUCTION

The recent experimental advance in the making
of carbon nanotubes1 in laboratories has been most
interesting in materials science2 because of their specific
physical properties, such as high-strength mechanical
properties,3 sensitive electronic properties,4 etc. All these
physical properties are very sensitive to the atomic
structures. Though it has been known that the tubes
are made of graphene sheets, they can still have various
geometries in the form of spiral tubes. As a consequence,
for instance, the atomic structure of the caps in a closed
tubule is directly related to the spiral geometry.5

Due to the very small size of the nanotubes, an
electron probe offers a unique tool in characterizing
the atomic structures in diffraction experiments. It is
so partly because fast electrons (10 keV to 1 MeV in
energy) have very small wavelengths and partly because
the interaction between the incident electrons with the
scattering atoms is much stronger compared to other
radiations, such as x-rays or neutrons.

Though high-resolution electron microscopy can
provide information on the size (radii of the tubes), it
is difficult to obtain any structural information along
the axial direction, which has been shown both by
experimental micrographs1 and numerical simulations,6

such as the periodicity, pitch length, pitch angles, etc.
On the other hand, electron diffraction patterns contain
a great deal of structural information, which sometimes
is more easily accessible than in the case of images
which are more sensitive to the imaging parameters of
the microscope.

Most recently Iijima and Ichihashi7 have reported
structural characterizations of single-shell carbon nano-
tubes of about 1 nm in diameter using high-resolution
electron microscopy and electron diffraction. The geom-

etry of the electron diffraction patterns from the carbon
nanotubes was also discussed in Ref. 8 using constructed
reciprocal spaces of the tubules.

In the present paper electron diffraction patterns
from such nanotubes are analyzed. Analytic expressions
for the diffraction intensities are given. The geom-
etry of diffraction patterns is also discussed in terms of
structural parameters of the nanotubes. As an example,
the characteristics of the diffraction pattern from a single
layer graphitic tubule of diameter 1.33 nm are presented
to illustrate the results.

II. DIFFRACTION FROM CYLINDRICAL OBJECTS

In electron diffraction the reflection intensity /(q)
is equal to the square of the absolute value of the
corresponding structure factor F(q), which is defined as

rj), (1)

where fi is the atomic scattering amplitudes, r; is the
atomic coordinates, and q is the scattering vector

q =
2 sin(@/2)

(2)

in which © and A are the scattering angle and the
electron wavelength, respectively. It is also proportional
to the Fourier transform of the Coulombic potential
function of the scattering object V(r)

J= J V(r) exp(27riq • r)dr. (3)

For a cylindrical object which is periodic in its axial
direction z, the structure factor F(/?, <£>,/) can be con-
veniently expressed in cylindrical coordinates (r,<f>,z)
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(see Appendix) as

X

n
re r ITT r <

/ / /

Jo Jo Jo
V(r,cf,,z)Jn(27TRr)

X exp -i[n(f> H — | rdrdSdz ,
L V c /J

(4)

where /„ is the Bessel function of order n, c is the
periodicity of the object along the 2-direction, and
(/?,<&,Z) are the cylindrical coordinates in the corre-
sponding reciprocal space.

The scattering amplitude from a continuous spiral
line of radius r0 and periodicity C, i.e.,

V(r,4>,z) = VQS(r - rQ)s{<f, (5)

is therefore

(6)

and the corresponding diffraction intensity distribution
Ic(R,®,0 is

Ic(R,Q,l) = \Fc(R,®,0\2

V)
For a structure composed of discrete atoms located

on a helical line, which has a periodicity of c with q
turns andp points, as schematically illustrated in Fig. 1,
the structure can be expressed as the product of the
continuous spiral and a set of planes located at z = j A,
where ; is an integer. In Fourier space, the nonextinction
layers are therefore the convolution of the structure
factor of a continuous spiral with the Fourier transform
of this set of planes, which is a set of discrete points
located at Z = j/A on the Z-axis:

A (8)

where m is an integer and n determines the order of
Bessel functions due to the continuous spiral. The struc-
ture factor is, hence,

Jn(27rr0R)

77"

~2~
X exp ml

where / and n are related by the selection rule:

I = nq + mp,

(9)

(10)

FIG. 1. Schematic structure of a discontinuous spiral. Lattice points
are located at a continuous spiral with equal spacing along the z-axis.

where

and

P = (11)

(12)

When there is JV-fold rotational symmetry along the
z-axis, then we have

F(R,4>,1) = X JkN&irroR) exp ikN O + ^

Jn{2Trr0R) exp | m ( O + — I I ,

(13)

and the selection rule

I = nq + mp (14)

is subject to the following constraint on the values of n:

n = 0, ±N, ±2N, ±3N... (15)

If there is more than one atom per unit cell (asym-
metric unit), a summation should be done over all the
atoms within the unit cell:

X

X exp
2ir/z

l , (16)
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where the summation over ; is done over all atoms in an
asymmetric unit cell. For the case where all atoms are
located on a cylindrical surface of radius rQ, we have

+ 00

, <£,/) = £ exp| m(O + ^

X J,

l ) l 07)X exp i[ ncf>

We can also use the radial projection method9 to
calculate the structure factors. In the radial projection
plane, the coordinates are related to the cylindrical
coordinates by

= rO(f>j
(18)

and the structure factor Tni which describes the scattering
amplitude from the radially projected structure is

where

a = 2 77 rn . (20)

Substituting Eq. (18) into Eq. (17), we obtain the total
structure factor in terms of the coordinates in the radial
projection net:

x

Bn(R,<t>)Tnl (21)

where

e x P
L

(22)

where the summation is done over all atoms in a unit
cell representing a lattice point in the radial projection
net. The indices n and / follow the same selection rule
given by Eq. (10).

III. STRUCTURE OF NANOTUBES

The lattice structure of a single-shell nanotube of
radius r0 can be characterized by two integers [u, v]
in the hexagonal lattice plane.10 Figure 2 gives such a
graphitic sheet with half of the radial projection for a
[18,2] tubule marked. The rectangular has two sides.
One is the circumference of the tubule a = ITTYQ, and
the other is the periodicity c along z-direction:

a = [KI,I>I]

= U\2i\ + V1SI2 (23)

where aj and 32 are the basis vectors of the hexagonal
graphite lattice with

r ai = a2 = a0

I a 1 - a 2 = - 1 / 2 (24)

and c = [u2, v2] is perpendicular to a, which can be
determined by

^ v 2 a 2 ) = 0, (25)

or

M2

2Mi - Vy

The helical angle a is given by

cos a =
v\

1/2 •

(26)

(27)

When the unit cell of the hexagonal graphene is used
as an asymmetric unit, the number of basic helices N is
equal to the value of v\. Though multiple helices can
be incorporated into a single basic helix, often it is more
convenient to have the basic helix as composed of single
carbon hexagons. In fact, multiple helices will introduce
./V-fold rotational symmetry about the z-axis.

FIG. 2. A single graphene sheet shows a half unit cell of the [18,2]
tubule in radial projection.
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The number of turns q is given by

c
~C

a tan a
(2Mi - V\){u\ + V2 - M2^)

Vl[3(Mi + f 1 "
(28)

and

P =

qa

cos a
u\ V1 U\V\

(29)

is the number of lattice points on a basic helix.
Since the radial projection of carbon nanotubes

is just a graphitic sheet, in calculating the structure
factors or diffraction intensities Eq. (21) will be the
most convenient one. There are two carbon atoms in the
asymmetric unit with coordinates (0,0) and (1/3,2/3) in
units of ao = 0.2451 nm. The fraction coordinates are
therefore

= 0

= 0 (30)

and

x2 =
v\ \l/2

3(«2 + VI - M2V2)

The corresponding cylindrical coordinates are

, _ 2irqj

(31)

= Xj tan a . (32)

IV. AN EXAMPLE

As an example, for the graphitic tubule (Fig. 3)
indexed by a = [18,2], we can obtain c = [14,34], and

a = 4.19 nm or d = 2r0 = 1.33 nm (33)

c = 7.25 nm. (34)

There are two basic helices, i.e.,

N = 2, (35)

Graphene Tubule of [18,2] with Lattice Points

20

10 -
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0-

a = 4.19 nm

(d = 1.33 nm)

c = [14,34]

c = 7.25 nm

N

q
p

•

= 2
= 17
= 292

-10

FIG. 3. Projection of the [18,2] graphene tubule of diameter d
1.33 nm. The units of both horizontal and vertical axes are nm.

and other parameters are

q = Yl
p = 292

a = 5.8°

A = 0.0248 nm

C = 0.426 nm.

is

I = nq + mp
= 11n + 292m

(36)
(37)

(38)

(39)

(40)

(41}

The selection rule is

with n taking values of multiples of N:

n = 0, ±2, ±4, ± 6 , . . . (42)

The following table lists some values for /, n, and m:

I = 0, n = 0, m = 0
I = 2, n = 86, m = - 5
/ = 4, n = -120 , m = 7
I = 6, n = —34, m = 2
I = 8, n= 52, m = -3
I = 10, n == 138, m = - 8
/ = 12, n = 68, m = 4

/ = 34, n =
I = 68, n =
I = 102, n =

2, m = 0
4, m = 0
6, m = 0
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Since the value of Bessel functions decreases very
rapidly with increasing values of their order, only the
terms with small n are significant. Therefore, the layer
lines of indices of multiples of 34 are of relatively high
intensities. For the above example, the first two layer
lines are located at

and

34c* = — = 4.65 nm"1
a0

68c* = — = 9.30
a0

(43)

(44)

The first maxima of Bessel functions J2(u) and J4{u)
occur at u2 = 3.05 and u4 = 5.30, respectively, where
u = 27rr0R. If we use the diameter of the tubule as
2r0 = 1.33 nm, then we have the corresponding values
for R at the above maxima:

and

R2 = 0.73 nm

R4 = 1.27 nm"

- l (45)

(46)

With the numbers obtained above, we can calculate the
angle between the maximum intensity rows from such
a tubule:

6 - 2
\34c*

68c*
- 1 8 ° . (47)

Consequently, the value of d can be used to identify the
atomic pitch angle of the tubule.

Depicted in Fig. 4 is the diffraction intensity distri-
bution from a [18,2] tubule with layer lines indexed in
accordance with the selection rule.

Shown in Fig. 5 is the power spectrum of Fig. 3,
which gives the geometric characteristics as discussed in
the analytic expressions. The strong noise background is
due to the relatively small number of scattering points,
as can also be seen from the experimental electron
diffraction patterns.78

V. DISCUSSION

It should be noticed that for the above example, only
even values of / appeared in the nonextinction layer lines.
It is because of the change in the periodicity c, which
has changed to half of the original value for the above
example due to the 2-fold symmetry. This introduces the
systematic extinction, like the case in crystal diffraction
with nonprimitive lattices. In general, when there is an
N-fold axis, the rule for systematic extinction is

DIFFRACTION INTENSITY OF C-TUBE [18,2]

120

80

-40

-80

-120

• 8 - 6 4 - 2 0 2 4 6 8

Radial Distance (2pirR)

FIG. 4. Fraunhofer diffraction intensity distribution from a [18,2]
tubule. Layer lines were indexed according to relevant selection rules.

where k is an integer. However, this applies to only the
layer lines with m = 0, which is often the only ones of
observable intensities.

It is interesting to note that the length of the basis
vector of the reciprocal lattice of the two-dimensional

kN, (48)

FIG. 5. Power spectrum of the [18,2] tubule shown in Fig. 2. The
first strong layer line is 34/c, and the angle between the Bessel peaks
is about 18°.
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graphitic lattice is

1 1.15
an = COS(TT/6)

= 4.65 nm- l (49)

which is equal to the value of 34c* [Eq. (43)] where
the first layer line appears. This has often led to a trend
to index the diffraction patterns from a graphitic tubule
using the indices of the hexagonal lattice of a graphene.

Since the wavelength of fast electrons (e.g., 3.7 X
10~3 nm at 100 kV and 2.5 X 10"3 nm at 200 kV,
respectively) is very small, the projection approximation
of electron diffraction theory is good for most cases
when the scattering objects are composed of carbons in
the form of graphitic tubules. However, when the radii
of the tubules are also very small, the projected structure
may deviate substantially from the projection of graphitic
sheets. In such cases, the cylindrical curvature cannot be
ignored in the projected structure, as evidenced by Fig. 3,
which deviates largely from the projected structure of
graphitic sheet, as shown in Fig. 2. Consequently, the
diffraction patterns are much more strongly affected
by the cylindrical geometry, as can be seen from the
diffraction intensity distributions. Only when the radii
of the tubules are much larger, the geometry of the
diffraction patterns may be well approximated as the
overlapping of two flat graphitic sheets rotated by 2a
with respect to each other.

VI. CONCLUSIONS

Analytic expressions for the electron diffraction in-
tensities and geometry from spiral graphene tubules have
been given to help characterize the structure of the car-
bon nanotubes in transmission electron microscopes. The
diffraction intensity distribution is described by Bessel
functions, and the atomic structure can be deduced by
examining the experimental diffraction patterns.
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APPENDIX

In a cylindrical coordinate system, the coordinates
(r, 4>,z) are related to the Cartesian coordinates (x,y,z)
by the following transformation:

(50)

or for the coordinates in reciprocal space

(51)

The structure factor in the cylindrical coordinate system
then becomes

= I V(r) exp(277-zq • r)dr

= / . / V(r,<f>,z)
J-oo Jo JO

X exp {2Tri[rR cos(<f) - $ ) + zZ]}

X rdrd(j)dz. (52)
This is a general expression for any object geometry in
a cylindrical coordinate system.

Expanding the potential function V(r,c/),z) into
Fourier series

+ 00

V(r,<f>,z)= X Vn(r,z)exp(incf,), (53)
n=—oo

and substitute it into Eq. (52):

+oo /• 2wr +oo /• 2w r o

F{R,<S>,Z)=
J-oo Jo JO

X

X exp(2irizZ)r dr dc/> dz
/• + 00 /• CO

I VB(r,z)exp(ma>)
J -oo Jo

t r2v

\ I exp lirirR cos(cf> - O)
[Jo L

+ in{ct> - d

X

X dcf>\ exp(27r«zZ)r dr dz
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/* +CO / • CO

X Vn(r,z) exp(27rizZ)
J -oo Jo

X Jn(27rrR)2-7rrdrdz, (54)

where /„ is the Bessel function of order n defined by

r2-
27TinJn{u) = I exp(/w cos 0 + incf>)d(f>. (55)

Jo

Noticing

1 f27r
Vn(r,z) = -—

2TT JO

we therefore have
+ 00

?,<D,Z) = X

, (56)

X V(r,<f>,z)
J - r e JO L J O

X exp(—in<f>)d(f> exp(2vizZ)

X Jn{2irrR)rdrdz

X V(r,cf>,z)
J -co Jo JO

X Jn(2irRr) exp(2v izZ)
X exp{-in<f>)r dr d$ dz . (57)

When the object has an N-fold rotation axis along
the z-direction, i.e.,

the Fourier expansion is
+ 00

V{r,(j>,z)= X VnN(r,z)exp(inN<f>) (59)
n =—co

where
» T r ITTIN

VnN{r,z) = —\ V(r,<f>,z)
2TT JO

X exp(-inN(f>)d(f>. (60)

The structure factor F( i? ,O,Z) can therefore be related
to the potential function V(r, <j>,z) by

+ 00 .-

F(R,<b,Z) = X exP J"M

/• +00 /• 00

X / / VnN(r,z)exp(27rizZ)
J-oo JO

X JnN{2TrrR)2Trr dr dz
+ 00 p

ie x P

r +oo /• 2TTW /* oo

X / V(r,0,z)
J-oo JO JO

X JnN{2irrR) exp(27n'zZ)
X exp(-inN<f))r dr dcf> dz . (61)

When the object is periodic in the z-direction with
a periodicity of c, the Fourier expansion of the potential
function is

+ 00 +00

V(r,<f,,z)=
n=—co / =—co

/

X exp(m 77i Z j , (62)

and we can similarly incorporate the z-components into
the relevant equations:

- X p
r c r 2TT r °°

X V{r,<t>,z)
Jo Jo Jo

X Jn(27TRr)
f / , 2TT/Z \1

X exp —i\n<p -\ I r<

or

where

Fnl(R) = exp i n — / Vnl(r)
\ l ) Jo

X Jn(2TTRr)2>rrr dr,
^ re r2w

Vnl(r) =
2TTC

X

re r
/

JO JO

(63)

F(i?,4>,/)= X F"' ( i ?) exp(mcD) (64)

(65)

(66)
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