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Measuring the true helicity of carbon nanotubes
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Abstract

Electron diffraction patterns from carbon nanotubes have been analyzed for measuring the true helicity of carbon
nanotubes. The cylindrical curvature of the tubules causes a large difference between the apparent half twist angle which
appears in electron diffraction patterns and the true helical angle of the examined tubule. A direct method has been
developed to calculate the cylindrical correction factors, which are vital for accurate deduction of the true helicity from
electron diffraction patterns. By combining with measured diameters from real-space images, it is now possible to determine
the atomic structure of carbon nanotubes. q 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

w xCarbon nanotubes 1 have been demonstrated to
possess extraordinary physical properties by both
theoretical calculations and experimental measure-
ments. Their properties are highly structure-sensitive.
Apart from the nanometer-sized diameter, a unique

w xstructural characteristic of both multiwalled 1 and
w xsingle-walled 2,3 nanotubes is that they are usually

helical, as indicated by their respective electron
diffraction patterns. The helicity of a nanotube has
important consequences in affecting the tubule prop-
erties. For example, a given single-walled carbon
nanotube, depending on its diameter and helicity, can

w xbehave either as a metal or semiconductor 4,5 ;
chiral current has been predicted to exist in B–C–N

w xcompound nanotubes by theoretical analysis 6 and
the current vectors are determined by the helicities of
the tubules. For an ideal single-walled carbon nan-
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otube, three parameters are needed to define its
atomic structure completely when it is helical: diam-
eter, helicity, and handedness. The measurement of
diameter from high-resolution electron micrographs
can be quite accurate when the magnification is well
calibrated and if the tubule diameter is not near its
lower limit of ;0.7 nm. Given the structural sensi-
tivity of tubule properties, measuring the helicity of
carbon nanotubes is therefore of great importance to
better understand structure–property and structure–
processing relationships. As the techniques for na-
notube synthesis are aimed at the ultimate goal of
fabricating nanotubes of designed structures, a reli-
able and accurate method to determine the helicities
is needed. However, practical advancement in accu-
rate measurement of tubule helicities has been slow
due primarily to a lack of good working procedures
and formidable experimental difficulties.

Electron diffraction has been an effective means
to reveal the helical nature of nanotube structures.
For a single-walled carbon nanotube lying perpen-
dicular to the incident electron beam, the electron
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beam passes through two graphitic layers, which are
referred to as the ‘top’ and ‘bottom’ layer, respec-
tively. When the tubule is helical, the top and bottom
graphene layers are misaligned with respect to each
other by a twist angle equal to twice the helical angle
a . This relative twist causes the resulting graphitic
electron diffraction pattern to split into two distinc-
tive sets with a splitting angle 2u that is most easily
visible along the tubule axis. A popular method that
has been widely employed to obtain helical angles
neglects the cylindricality of the nanotubes. Under
this assumption, the apparent half twist angle u

observed in the electron diffraction pattern is approx-
imated as the true helical angle a of the tubule.

An early analysis of the diffraction phenomena
from cylindrical tubules has led to analytic formulas
for calculating the electron or X-ray diffraction am-

w xplitudes from tubules of given structure 7 , in which
the cylindrical curvature of nanotubes had been fully
taken into account. A further development of this
theory for applications to the reverse problem, i.e., to
obtain the helical angles from experimental electron
diffraction patterns, found that large errors often

w xresult if the cylindricality factor is not corrected 8 .
The difference between the apparent half twist angle
u measured from an experimental electron diffrac-
tion pattern and the true helical angle a of the
diffracting tubule can be as large as 70–80%. Fortu-
nately, the difference can be well related by a spe-
cific order of Bessel function that expresses the
cylindrical effect. Although the cylindrical correction

w xfactors have been worked out 8 , the complexity of
the expression makes it difficult to deduce the order
of the associated dominating Bessel function with
trial-and-error methods. The lack of an explicit for-
mula has therefore made the procedure difficult to
apply to routine determination of the helicities of
nanotubes from experimental diffraction data.

In this Letter, simplified and straightforward ana-
lytic results are presented for calculating the order of
the modifying Bessel function and therefore the
cylindrical correction factors. The correction factors
are graphed and are shown to be related directly to a
Bessel function of specific order, which can be

w xdetermined from the tubule indices u , Õ that spec-1 1

ify the perimeter of the cylindrical tubule on the
graphene net. A few practical examples of single-

w x w xwalled carbon nanotubes with indices 12, 1 , 18, 2 ,

w xand 31, 13 are given as illustrations of the proce-
dure.

2. Theoretical consideration

The atomic structure of a single-walled carbon
nanotube can be described by two integer indices
w xu , Õ , that specify the perimeter of the tubule in1 1

radial projection on a graphene net. The basis vec-
Ž .tors, a and a a sa sas0.2451 nm , are cho-1 2 1 2

w xsen following the crystallographic convention 9 as
shown in Fig. 1a. Other choices of basis vectors

Ž .Fig. 1. a Structure of graphene with basis vectors a and a1 2
Ž . Ž .a s a s as0.2451 nm defined and b corresponding recipro-1 2

cal space structure with basis vectors a) and a). The relative1 2

orientation between these two structures are fixed when the
graphene is rotated.
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should lead to equivalent physical results, though the
indices may appear to be different. Once the basis
vectors are chosen, other structural parameters, such

w x Žas tubule perimeter As u , Õ or diameter ds1 1
. w xArp , helical angle a , and tubule axis Bs u , Õ ,2 2

etc., can be deduced from these two indices:
1r22 2Asa u qÕ yu Õ , 1Ž .Ž .1 1 1 1

u rÕ s u y2Õ r 2u yÕ , 2Ž . Ž . Ž .2 2 1 1 1 1

1r2y1 2 2ascos 2u yÕ r2 u qÕ yu Õ .Ž . Ž .1 1 1 1 1 1

3Ž .
It should be noted that the indices u and Õ should2 2

be chosen in such a way that there should be no
other common factors except unity.

For a general case, i.e., with atoms positioned at
Ž .discrete locations r , f , z on a helix of radius r ,0 j j 0

the corresponding structure factor F in polar coordi-
Ž .nates R, F , l can be expressed in the following

w xform 7 :

F R , F , l s exp in Fqpr2 J 2p r RŽ . Ž . Ž .Ý n 0
n

= f exp i nf q2p lz rB ,Ž .Ý j j j
j

4Ž .
where f is the atomic scattering amplitude for atomj

Ž .j, J u is the Bessel function of order n, B is then

periodicity of the structure along the z-direction
Ž .tubule axis , the summation for j is done over all
atoms in an asymmetric cell, and n is summed over
all integers as allowed by the selection rule deter-

w xmined by the structure 7 .
Ž .When the above Eq. 4 is rewritten as

F R , F , l s B R , F T , 5Ž . Ž . Ž .Ý n nl
n

with

B R , F sexp in Fqpr2 J 2p r R 6Ž . Ž . Ž . Ž .n n 0

and

T s f exp 2p i nx rAq lz rB , 7Ž .Ž .Ýnl j j j
j

Ž .where x , z are the Cartesian coordinates of atomj j

j in radial projection, the diffraction from a cylindri-
cal tubule is more clearly seen by dividing the

Ž .pattern into two parts: a the structure factor in
Ž .radial projection described by T ; and b thenl

Ž .modifying function B R, F taking into account ofn

the effect of cylindrical curvature. For the case of
single-walled carbon nanotubes, T gives rise to thenl

regular hexagonal diffraction pattern from graphene
Ž .as shown in Fig. 1b. As indicated by Eq. 5 , the

modifying Bessel function alters the intensity peak
positions in the diffraction pattern, and the shifts are
determined by the order of the acting Bessel func-

w xtion. As shown in 8 , the shift for ns1 is ;80%,
and the shift for ns2 is ;50%, etc. In general, the
cylindrical correction factor for a given order of

Ž .Bessel function J 2p r R is expressed by the fol-n 0
w xlowing equation 8 :

tan u s u rn tan a , 8Ž . Ž . Ž . Ž .n

where u is the apparent half twist angle measured
from an experimental electron diffraction pattern, a

is the true helical angle of the tubule, and u is then
Ž .value of u at which the Bessel function J u as-n

sumes its first maximum for n/0. The correction
factors are plotted for various low values of n in Fig.
2.

w xFor a given tubule structure u , Õ , when the1 2

graphene structure is indexed as illustrated in Fig. 1,
the apparent twist angle can be measured most con-

Ž . Žveniently on either 100 type for helical angles
. Ž . Ž08FaF158 or 110 type for helical angles 158F

.aF308 reflections. Given the very weak effect due

Fig. 2. Cylindrical correction factor u rn vs. order of Besseln

function n. The correction factor is large for low values of n. For
example, when ns1, the correction factor is ;80%.
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to the discontinuity of the scattering Coulombic po-
w xtential 7 , the selection rule should therefore be such

that the reflection G from the radial projection net
should fall onto the reciprocal lattice point g of the

) ) Ž )graphene structure. Let A and B A s1rA;
) .B s1rB be the basis vectors of the reciprocal

lattice of the radial projection net of the tubule, the
selection rule is then

Gsg , 9Ž .
or equivalently

nA) q lB) sha) qka) , 10Ž .1 2

for the general case where

GsnA) q lB) 11Ž .
and

gsha) qka) . 12Ž .1 2

Noting that

lB) sg sin gya , 13Ž . Ž .
as illustrated in Fig. 3a, where g is the angle be-
tween the chosen reflection g and basis vector a ,1

then the selection rule Gsg can be further simpli-
fied to the following form:

nshu qkÕ . 14Ž .1 1

This result is valid for the general geometry where
the helical angle is measured clockwise with respect
to the horizontal axis that is perpendicular to the
tubule axis as shown in Fig. 3. Two specific sets of

Ž .reflections are worthy of special attention: 100 and
Ž .110 and their respective crystallographic equiva-
lents on which the measurement of twist angles 2u

Ž . wis usually performed. For reflection 010 its crystal-
Ž .lographically equivalent reflections are 1, 0, 0 ,

Ž . Ž . Ž . Ž .x1, y1, 0 , 0, y1, 0 , y1, 0, 0 , and y1, 1, 0 , g
sa) , as schematically illustrated in Fig. 3b, the2

selection rule is determined by equation

nsÕ . 15Ž .1

Ž . wWhile for reflection y1, 2, 0 its crystallographi-
Ž . Ž .cally equivalent reflections are 1, 1, 0 , y2, 1, 0 ,

Ž . Ž . Ž .xy1, y1, 0 , 1, y2, 0 and 2,y1, 0 , as illustrated
in Fig. 3c, where gsya) q2 a) , the selection1 2

Ž .equation corresponding to Eq. 15 is

nsyu q2Õ . 16Ž .1 1

Ž .Fig. 3. a Geometric relationship between the primary graphene
reflections g within the framework of radially projected unit cell

Ž .of length A and height B. b, c Schematic diffraction patterns
from single-walled carbon nanotubes for the measurement of twist

Ž . Ž .angles for b near-zigzag structure and c near-armchair struc-
ture, respectively. Subscripts T and B refer to the top and bottom
layer of the tubule, respectively.



( )L.-C. QinrChemical Physics Letters 297 1998 23–28 27

Ž . Ž .Eqs. 15 and 16 restrict the helical angles within
w xthe range 08, 308 . The above equations can also

make the calculation of electron diffraction patterns
of carbon nanotubes fast and straightforward.

3. Results and discussion

w x w xFor tubule u , Õ s 12, 1 , the helical angle is1 1
Ž .as4.38. Using Eq. 15 , when the apparent half

Ž .twist angle is measured on the 010 reflection, the
modifying Bessel function should have the order
ns1. Therefore the measured apparent half twist
angle u would be enlarged by ;80% to become

Ž .7.58, as shown by Eq. 8 . This is confirmed by
Ž .numerical calculations using Eq. 4 as shown in Fig.

4a, where the apparent twist angle 2u between the
Ž . Žtwo 010 reflections T and B designate the top and

.bottom layer of the tubule, respectively is measured
to be ;158. It is interesting to note that, for the
Ž .020 reflection, the modifying Bessel function has
the order of 2, so the apparent half twist angle u

becomes accordingly smaller, which is actually mea-
Ž .sured to be ;6.58 50% difference , as indicated in
Ž .the correction chart Fig. 2 . Fig. 4b shows the case

w xfor tubule 18, 2 , where as5.88 and us98 with
ns2.

The above two examples have helical angles 08F
Ž .aF158, so the 010 reciprocal lattice vector lies

Žnearly parallel to the tubule axis off-axis angle a ,
.see Fig. 3b . On the other hand, for the tubule

w x w xu , Õ s 31, 13 , its helical angle is as24.78. In1 1
Ž .this case, the 110 reflections should be nearly

w x w xparallel to the tubule axis u , Õ s 5, 49 . The2 2

apparent half twist angle measured from the simu-
Ž .lated electron diffraction pattern is 78 Fig. 4c ,

which is ;30% large than the twist angle with
Ž . Ž .respect to the tubule axis 308ya . Using Eq. 16 ,

the acting Bessel function should be of order ns5,
which gives rise the correction factor ;30%, as

Ž .shown in the correction chart Fig. 2 . The experi-
mental electron diffraction patterns from all the
above-indexed single-walled carbon nanotubes can

w xbe found in literature 8 .
An interesting effect is that even when the order

of Bessel functions becomes large, the cylindrical
correction factors are still not negligible. For exam-
ple, for ns20 and ns40, the cylindrical correction

Fig. 4. Calculated electron diffraction intensity distribution for
Ž . w x Ž . Ž . w xcarbon nanotubes: a 12, 1 ds0.90 nm, a s4.38 ; b 18, 2

Ž . Ž . w x Ž .ds1.33 nm, a s5.88 ; and c 31, 13 ds2.10 nm, a s24.78 .
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factors are still ;1.11 and ;1.07, respectively.
This fact results in a lateral stretching of the hexago-
nal Fraunhofer diffraction pattern by ;10%. This
effect is observable in both simulated and experi-

w xmental diffraction patterns 12 .
Though the method presented here has been lim-

ited to dealing with single-walled carbon nanotubes,
the principles and algorithms are valid for multi-
walled carbon nanotubes or cylindrical tubules
formed by other types of atoms. The extension to
these cases is straightforward.

It should be noted that the electron diffraction
patterns possess 2mm symmetry. This is true even
when the tubule is tilted away from directions per-
pendicular to the incident electron beam, though the
projected structure along the electron beam direction
may not necessarily have 2mm symmetry.

The procedure proposed here should allow easy
measurement of the true helicity of carbon nan-
otubes. For example, in laser evaporation, individual
and raft-like bundles of single-walled carbon nan-

w xotubes 10–13 are produced. Although substantial
attempts have been made to correlate the processing
parameters with tubule diameters, it is still far from
being conclusive in correlating the processing condi-
tions and tubule helicities. With regard to the prop-
erty–structure relationship, one example is the sensi-
tivity of electric-field induced electron emission from
carbon nanotubes. With manipulatable nanotubes

w xavailable 14 , it is expected that the property–struc-
ture relationship, in particular the property–diame-
ter–helicity relationship will be better understood in
the near future.

4. Conclusions

w xThe true helicity a of a carbon nanotube u , Õ1 1

can be deduced from the half twist angle u measured
on an experimental electron diffraction pattern. The
cylindrical correction factor due to the curvature of
the measured tubule is determined by a Bessel func-

tion of order n, which can be calculated directly
from the tubule indices
Ž .a nsÕ , for 08FaF158;1
Ž .b nsu y2Õ , for 158FaF308.1 1

Without the correction, the resulted error can be as
large as 80%, depending on the order of the modify-
ing Bessel functions.
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