Helical Diffraction from Tubular Structures
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An electron diffraction technique is described that enables both the calculation of electron
diffraction intensity distribution from a given tubule structure and the deduction of its true
helicity from an experimental electron diffraction pattern of the nanotube. The cylindrical-
ity and the helicity of nanotubes are taken into full account. An example of the applications
is also presented as an illustration for the simulation of the electron diffraction pattern and
the deduction of its true helicity of a single-walled helical carbon nanotube of indices [12,

1]. © Elsevier Science Inc., 2000. All rights reserved.

INTRODUCTION

The unique properties of carbon nanotubes
[1-3] have made this new form of solid car-
bon a most studied nanomaterial for the
past few years. A striking characteristic of
carbon nanotubes is that they can behave
either as a metal or as a semiconductor, de-
pending on their diameter and helicity, as
has been demonstrated both theoretically
and experimentally [4-9]. The one-dimen-
sionality property has turned carbon nano-
tubes to an ideal quantum wire model ma-
terial for studies of many low-dimensional
phenomena [10, 11]. In the aspect of micro-
structural characterization, many morpho-
logical studies have been reported using
various microscopy techniques, including
transmission electron microscopy (TEM),
scanning electron microscopy (SEM), and
scanning probe microscopies (SPM). TEM
techniques have many unique features, and
have been most powerful in obtaining
structural information of nanotubes on the
atomic scale, in particular on individual tu-
bules and aggregates such as raft-like bun-
dles. On the one hand, various electron im-
aging techniques are able to provide direct
visualization of the tubule diameters and
their variations in real space. On the other
hand, electron diffraction techniques pro-
vide complementary information on the
helicities of nanotubes.
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The electron diffraction techniques are use-
ful in two major aspects for the study of the
helical nature of carbon nanotubes: (a) reveal-
ing the helical characteristic of nanotubes, and
(b) determining the true helicity of the nano-
tubes. So far, electron diffraction is still the
only technique that allows one to identify and
to deduce the helicity of carbon nanotubes, in
particular for the multiwalled tubules, where
the capability of scanning probe microscopies
is limited to identifying the outmost layer at
best. However, transmission electron diffrac-
tion is able to examine all layers in a multi-
walled nanotube simultaneously.

In the present paper, the methodology for
both the calculation of diffraction patterns
from a known tubule structure and the de-
duction of the true helicity of the tubule from
an experimental electron diffraction pattern
is presented. An application of the technique
is illustrated with a practical [12, 1] single-
walled carbon nanotube as an example.

STRUCTURE DESCRIPTION

Figure 1 shows schematically how a well-
defined single-walled carbon nanotube is
described crystallographically from a sec-
tion of graphene. Once the crystallographic
basis vectors are defined (in this paper, the
crystallographic convention [12] is adopted
where the interangle between the two basis
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vectors is 120°), the tubule perimeter can be
described by a vector [u, v], and the tubule
axis perpendicular to the perimeter is also
well defined. Given in Fig. 1(a) is the crys-
tallographic definition of basis vectors a;
and ay, and Fig. 1(b) is the electron diffrac-
tion pattern from the graphene shown in
Fig. 1(a). The radial projection of the [12, 1]
tubule is shown in Fig. 1(c), and a single-
walled carbon nanotube formed by rolling
up this section is shown in Fig. 1(d).

When the indices [u, v] are given, the tu-
bule diameter d is given by

2

1/
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a
d= —O(u2+v
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where gy = 0.2451nm is the lattice constant
of the graphene net, and the helical angle «,
defined as the angle between the basis vec-
tor a; and the perimeter vector, is given by

a = cos 2u—o
Z(u2 +v°— uv)l/2

RESULTS AND DISCUSSION

CALCULATION OF SCATTERING
AMPLITUDE

The scattering amplitude for a given single-
walled carbon nanotube of radius r can be
calculated using the following equation [12]:

F(R®]) = zw B,(R.®)T,,

n=—00

where

B,(R,®) = exp [ingn + 3% ], (2TR)

accounts for the cylindricality of the tubule
in which J,(u) is the Bessel function of order
n and

T =3 exp ifho, + %%l—zﬁ
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expresses the electron scattering amplitude
from a repetitive unit of the tubule in radial
projection, where f] is the atomic scattering
amplitude for the atom positioned at cylin-
drical coordinates (7}, d;, zj), (R, ®, Z) are the
cylindrical coordinates in reciprocal space,
and A and C are the perimeter and the peri-
odicity along the tubule axis, respectively.

Figure 2 shows the calculated electron
diffraction intensity distribution from a sin-
gle-walled carbon tubule of indices [12, 1]
using the above equations.

A noteworthy feature in the electron dif-
fraction pattern is that the cylindricality of
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FIG. 1. Choice of basis vectors to define the crystallo-
graphic indices and schematic showing the structure
of a [12, 1] tubule made out of a graphene. (a) Basis
vectors a; and a; in a graphene net with an interangle
of 120°% (b) corresponding electron diffraction pattern
from the graphene oriented in (a); (c) radial projection
of a repetitive structural unit of the [12, 1] tubule; and
(d) section of the finished [12, 1] single-walled carbon
nanotube.
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FIG. 2. Calculated electron diffraction intensity map

for the single-walled carbon nanotube of indices [12,
1]. The scale is in nm~1.

the nanotube results in significant geometry
changes in the diffraction pattern. This effect
(referred to as cylindrical effect hereafter)
can no longer be neglected to obtain accurate
results. This effect is stronger for smaller he-
lical angles, as the cylindrical distortion is, to
a large extent, dictated by the relevant Bessel
functions. As has been shown [13], the dis-
tortion can be rather large for low order
Bessel functions. For example, when n = 1,
the correction factor can be as large as 80%.

DEDUCTION OF TRUE HELICITY

As discussed above, the cylindricality of a
nanotube causes distortion in the diffrac-
tion pattern. This change of symmetry is re-
flected by the difference between the true
helical angle a and the half-twist angle 6,
which is the half-angle of rotation between
the two sets of graphene diffraction pat-
terns resulting from the respective top and
bottom layers of a single-walled carbon
nanotube. This distortion needs to be ac-
counted for to deduce the true helicity of a
nanotube. The distortion, which is in effect
to enlarge the separation between the
graphene reflections and is governed by
the dominating Bessel function, can be ex-
pressed in the following equation [13]:
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un
tan(8,) = gtan((x),

where u, is the value of the variable for
which the nth order Bessel function J,(u) as-
sumes its first maximum. The values of u,/n
are known as cylindrical correction factors.

When the (010) reflection is used for zigzag
tubules (0 < « < 15°) and the (110) reflection
for armchair tubules (15° < a < 30°) for the
measurement of the twist angle with respect
to the tubule axis, fortunately the correction
factor u,/n can be linked to the helical angle o
in a very straightforward way [14]:

On = v, for (0 <a <15°)

En —u +2v, for (15° < a < 30°.)

This simple relationship makes it a fairly
easy task to deduce the true helicity of a
carbon nanotube from its electron diffrac-
tion patterns.

Figure 3 is an experimental electron diffrac-
tion pattern from a single-walled carbon nan-
otube of 0.9nm diameter [13]. The half-twist
angle 6 measured on the (010) reflection with
respect to the tubule axis is about 7.5°, and
this value fits the tubule of indices [12, 1],
where the correction factor (u,/n) is about 1.8,
leading to the true helical angle o = 4.3°.

FIG. 3. Experimental electron diffraction pattern of a
tubule of diameter 0.9nm. The apparent twist angle 260
measured on the (010) reflections along the axial direc-
tion in this diffraction pattern is about 15°. The true
helicity of this carbon nanotube is determined to be
4.3° with indices [12, 1].
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The above development allows the accu-
rate deduction of the true helicity of a nano-
tube of known diameter using an experi-
mental electron diffraction pattern from the
tubule. Figure 4 shows a flow chart of the
procedure that has been used for the deter-
mination of the crystallographic indices [u,
v] of a single-walled carbon nanotube. The
tilt B refers to the angle between the tubule
axis and the horizontal plane that is per-
pendicular to the optic axis [13], which
would effectively reduce the apparent twist
angle shown in the experimental electron
diffraction pattern (EDP). The true value of
0 refers to the value corrected for the tilting
angle 3. As shown previously, it should not
be difficult to determine whether the tu-
bule is of zigzag or armchair structure from
the geometry of the electron diffraction pat-
tern; this classification would actually
greatly reduce the number of possible [u, v]
values to begin with. Once the crystallo-
graphic indices [u, v] are determined, the
helicity is also determined using Eq. (2).
This procedure is valid for both the zigzag
tubules and the armchair tubules, although
the axial reflections used for these two
cases could be different. However, it
should be mentioned that the choice of us-
ing the (010) reflection for the zigzag tu-
bules and the (110) reflection for the arm-
chair tubules is only for the sake of
experimental conveniences, because these
reflections show highest reflection intensi-
ties for the two structures in respective set-
tings.

When the single-walled carbon nano-
tubes form raft-like bundles [15, 16], the he-
licity distribution can also be elucidated us-
ing electron diffraction analysis [17, 18].
Experimental results have shown that the
majority of the single-walled carbon nano-
tubes produced by laser evaporation have a
rather random distribution of helicities in-
stead of being single valued.

It should be noted that the above meth-
odology is extendable to the case of multi-
walled carbon nanotubes. For a multi-
walled tubule, the resultant -electron
diffraction pattern is a superposition of the
diffraction patterns from all the individual
shells [19]. Because the coherence between
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FIG. 4. Flow chart illustrating the procedure for de-
ducing the true helicity of a carbon nanotube of
known diameter from an experimental electron dif-
fraction pattern.

the shells is rather weak, this superposition
is a simple sum of all individual intensities
to a satisfactory approximation for helicity
analysis.

CONCLUSIONS

Electron diffraction patterns from carbon
nanotubes can be accurately calculated for
any given structure using the helical dif-
fraction theory for tubular structures. The
cylindrical effect is taken into full account
by incorporating Bessel functions into the
scattering formulas. Using an experimen-
tally obtained electron diffraction pattern,
the true helicity of the diffracting carbon
nanotube can be deduced after appropriate
corrections are made to account for the cy-
lindrical effect. An example has been dem-
onstrated for the case of a [12, 1] single-
walled carbon nanotube.
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