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The atomic structure of a carbon nanotube can be defined by the chiral indices, (n,m), that specify

its perimeter vector (chiral vector), with which the diameter and helicity are also determined. The

fine electron beam available in a modern Transmission Electron Microscope (TEM) offers a

unique and powerful probe to reveal the atomic structure of individual nanotubes. This article

covers two aspects related to the use of the electron probe in the TEM for the study of carbon

nanotubes: (i) to express the electron diffraction intensity distribution in the electron diffraction

patterns of carbon nanotubes and (ii) to obtain the chiral indices (n,m) of carbon nanotubes from

their electron diffraction patterns. For a nanotube of given chiral indices (n,m), the electron

scattering amplitude from the carbon nanotube can be expressed analytically in closed form using

the helical diffraction theory, from which its electron diffraction pattern can be calculated and

understood. The reverse problem, i.e., assignment of the chiral indices (n,m) of a carbon nanotube

from its electron diffraction pattern, is approached from the relationship between the electron

diffraction intensity distribution and the chiral indices (n,m). The first method is to obtain

indiscriminately the chiral indices (n,m) by reading directly the intensity distribution on the three

principal layer lines, l1, l2, and l3, which have intensities proportional to the square of the Bessel

functions of orders m, n, and n + m: Il1 p |Jm (pdR)|2, Il2 p |Jn (pdR)|
2, and Il3 p |Jn+m

(pdR)|2. The second method is to obtain and use the ratio of the indices n/m = (2D1 � D2)/

(2D2 � D1) in which D1 and D2 are the spacings of principal layer lines l1 and l2, respectively.

Examples of using these methods are also illustrated in the determination of chiral indices of

isolated individual single-walled carbon nanotubes, a bundle of single-walled carbon nanotubes,

and multi-walled carbon nanotubes.

Introduction

Diamond and graphite have long been regarded as the only

allotropes of crystalline carbon and their atomic structures

were determined soon after the X-ray diffraction method was

developed in the early 1910’s.1–3 The discovery of fullerenes

and the subsequent success in their large scale synthesis

prompted renewed searches of unknown structures of carbon

at the nanometer scale.4,5 Carbon nanotubes were first identi-

fied by Iijima in 19916 in the cathodic deposits produced by dc

arc-discharge of two graphite electrodes in an apparatus

developed to produce fine particles and fullerenes.7 The ulti-

mate form of carbon nanotubes is single-walled carbon nano-

tubes,8,9 which can be constructed schematically by rolling up

a rectangular cut of graphene about a chosen axis to form a

seamless cylinder of diameter on the nanometer scale.

The atomic structure of a single-walled carbon nanotube is

well described by its chiral indices (n,m) that specify the

perimeter of the carbon nanotube on the graphene net. The

determination of the chiral indices has been a challenge to

researchers ever since carbon nanotubes were discovered.

Transmission Electron Microscopy (TEM) has been the most

powerful and most popular technique in characterizing the

morphology and structure of carbon nanotubes. In addition to

the TEM method, other analytical techniques, especially Ra-

man spectroscopy,10,11 optical absorption spectroscopy,12,13

and scanning tunneling microscopy14–18 have also been used

extensively in attempt to elucidate the atomic structure and to

obtain the chiral indices of carbon nanotubes. However, due

to various limitations, there are still formidable difficulties to

determine the atomic structure of carbon nanotubes accurately

with these techniques.

Electron diffraction was the first technique employed to

identify the helical nature in the structure of carbon nano-

tubes6 and it has continued to play a vital role in the structural

studies of carbon nanotubes. Based on the helical theory

developed for the study of a-helix and the helical DNA

molecules,19–25 the kinematical diffraction theory for the scat-

tering of electrons or X-rays from carbon nanotubes was

formulated by Qin in 199426 and subsequently by Lucas

et al. in 1996.27–29 In addition, electron diffraction from

carbon nanotubes was also discussed extensively using geo-

metric illustrations.30–35 On the other hand, electron diffrac-

tion has also been explored for the possibility of solving the

atomic structure of carbon nanotubes, in particular, to obtain
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the helicity of carbon nanotubes over the past fifteen

years.36–46 Two approaches have been developed: one using

a correction factor to obtain the chiral angle from the electron

diffraction pattern,39 and the other using the ratio of the layer

lines measured in the electron diffraction patterns.45 The

atomic structure of a double-walled carbon nanotube was also

obtained by an electron crystallographic method using phase

retrieval.47 Most recently, a one-step direct method has been

developed48 and has been applied to determine the atomic

structure of a large number of carbon nanotubes, both single-

and multi-walled.49–51 Electron diffraction is by far the most

powerful technique for studying the atomic structure, includ-

ing the handedness, of carbon nanotubes with high accuracy,

as can be seen in the literature.52–85

Structural description of carbon nanotubes

The solid state physics convention is used in this article to describe

the graphene lattice structure, where the basis vectors of the

graphene net,~a1 and~a2 (a1= a2= a0= 0.246 nm), are separated

with an inter-angle of 601, as shown schematically in Fig. 1(a) in

radial projection. On the graphene net, the chiral indices (n,m)

specify the perimeter of the carbon nanotube, as shown schema-

tically in Fig. 1(a) for the chiral vector (7,1). For a carbon

nanotube of given chiral indices (n,m), its perimeter vector is

A
!
¼ ðn;mÞ ¼ na

!
1 þma

!
2; ð1Þ

which has a magnitude A= a0(n
2 + m2 + nm)1/2. The diameter,

d, of the carbon nanotube is

d ¼ A

p
¼ a0

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þm2 þ nm

p
ð2Þ

and the helicity, a, defined as the angle between the perimeter

vector, ~A= (n,m), and the basis vector,~a1, illustrated in Fig. 1(a),

is

a ¼cos�1 2nþm

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þm2 þ nm
p

� �

¼sin�1
ffiffiffi
3
p

m

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þm2 þ nm
p

 !

¼tan�1
ffiffiffi
3
p

m

2nþm

 !
:

ð3Þ

Once the chiral indices (n,m) of a carbon nanotube are assigned,

the tubule axis, (nc,mc), perpendicular to the chiral vector, ~A, can

be calculated by applying the orthogonality relationship between

the tubule perimeter and the tubule axis, which yields

mc

nc
¼ � 2nþm

nþ 2m
: ð4Þ

The indices of the tubule axis (nc,mc) should be chosen as the pair

which has no common factors other than 1. Denoting M as the

greatest common integer divisor of integers (2n + m) and (n +

2m), the axial lattice vector (nc,mc) can then be expressed as

nc ¼ �
nþ 2m

M

mc ¼
2nþm

M

8><
>: ; ð5Þ

and the axial periodicity, c, of carbon nanotube (n,m) can also be

obtained86

c ¼ a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2c þm2

c þ ncmc

q
¼

ffiffiffi
3
p

a0

M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þm2 þ nm

p
¼

ffiffiffi
3
p

A

M
:

ð6Þ

When a rectangle with sides A and c is cut out of the graphene

and is then rolled up about the tubule axis, c, perpendicular to the

perimeter, A, a cylindrical nanotube (7,1) is formed as shown in

Fig. 1(b).

The atomic positions of a single-walled carbon nanotube

can be conveniently expressed by the Cartesian coordinates

(xj, zj) in the radial projection, where the nanotube is projected

onto a rectangle with sides A and c as described above. In fact,

the atomic structure of the carbon nanotube can be described

Fig. 1 (a) Schematic structure of graphene with basis vectors ~a1 and

~a2. The shadowed rectangle is the radial projection of carbon nanotube

(7,1) with perimeter ~A and helical angle a. (b) Single-walled carbon

nanotube (7,1) is formed from the cut by rolling it up about axis ~c

perpendicular to the perimeter vector ~A.
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by pairs of parallel atomic helices. There are three equivalent

molecular helices in a single-walled carbon nanotube. They are

parallel to the directions of the basis vectors ~a1, ~a2, and ~a3 =

~a2 � ~a1, respectively. The three primary helices are indicated

on the graphene net as shown in Fig. 2(a). Each helix consists

of a pair of atomic helices, displaced by a translational vector.

Within a repetition unit in the axial direction, there are m helix

pairs parallel to~a1, n helix pairs parallel to~a2, and n+ m helix

pairs parallel to~a3 =~a2 �~a1. With respect to a chosen carbon

atom located at the origin, there are n + m atoms on

the primary helix parallel to ~a1 and their coordinates are

(c.f. Fig. 2(b))

x
ð1;0Þ
j ¼ ja0 cosðaÞ;

z
ð1;0Þ
j ¼ �ja0 sinðaÞ;

(
j ¼ 0; 1; 2; . . . ; nþm� 1; ð7Þ

and the atoms on the secondary helix are at

x
ð1;1Þ
j ¼ x

ð1;0Þ
j � a0ffiffiffi

3
p cosð30� � aÞ;

z
ð1;1Þ
j ¼ z

ð1;0Þ
j � a0ffiffiffi

3
p sinð30� � aÞ;

8>>>><
>>>>:
j ¼ 0; 1; 2;::: ; nþm� 1:

ð8Þ

The atomic structure of the carbon nanotube can then be

described by the m such helix pairs by translating the primary

helix pair by multiples of the basis vector ~a3:

x
ð3;0Þ
j ¼ �ja0 sinð30� � aÞ ;
z
ð3;0Þ
j ¼ ja0 cosð30� � aÞ ;

(
j ¼ 0; 1; 2; . . . ; m� 1: ð9Þ

Similarly, the atomic positions on the primary helix parallel to

~a2 (left handed—the~c axis is inverted in calculating the atomic

coordinates) are

x
ð2;0Þ
j ¼ ja0 cosð60� � aÞ;

z
ð2;0Þ
j ¼ �ja0 sinð60� � aÞ;

8>><
>>:

j ¼ 0; 1; 2; . . . ; 2n�m� 1:

ð10Þ

and the atoms on the secondary helix are at

x
ð2;1Þ
j ¼ x

ð2;0Þ
j þ a0ffiffiffi

3
p sinðaÞ

z
ð2;1Þ
j ¼ z

ð2;0Þ
j � a0ffiffiffi

3
p cosðaÞ

8>>>><
>>>>:

;

j ¼ 0; 1; 2; . . . ; 2n�m� 1:

ð11Þ

The atomic structure of the carbon nanotube can be expressed

by the n helix pairs generated by translating the primary helix

pair by multiples of ~a1

x
ð1;0Þ
j ¼ ja0 cosðaÞ

z
ð1;0Þ
j ¼ ja0 sinðaÞ

(
; j ¼ 0; 1; 2; . . . ; n� 1: ð12Þ

The atomic positions on the primary helix parallel to ~a3 =

~a2 � ~a1 are

x
ð3;0Þ
j ¼ �ja0 sinð30� � aÞ

z
ð3;0Þ
j ¼ ja0 cosð30� � aÞ

8>><
>>: ;

j ¼ 0; 1; 2; . . . ; 2nþm� 1:

ð13Þ

and the secondary helix is

x
ð3;1Þ
j ¼ x

ð3;0Þ
j þ a0ffiffiffi

3
p sinð30� þ aÞ

z
ð3;1Þ
j ¼ z

ð3;0Þ
j � a0ffiffiffi

3
p cosð30� þ aÞ

8>>>><
>>>>:

;

j ¼ 0; 1; 2; . . . ; 2nþm� 1:

ð14Þ

The atomic structure of the carbon nanotube can be expressed

by the n + m helix pairs generated by translating the primary

helix pair by multiples of ~a1

x
ð1;0Þ
j ¼ ja0 cosðaÞ

z
ð1;0Þ
j ¼ �ja0 sinðaÞ

(
; j ¼ 0; 1; 2; . . . ; nþm� 1: ð15Þ

Due to the hexagonal rotational symmetry of the graphene

lattice, the non-degenerate range for helicity, a, is 601,

which can be confined to the range of [01,601]. The values

in [01,301] can be assigned to the right-handed tubules,

Fig. 2 (a) Schematic illustrating the principal helices that are parallel

to the basis vectors ~a1 (solid), ~a2 (dashed) and ~a3 = ~a2 � ~a1 (dotted).
(b) Definition of the chiral vector A, axial direction C, and the basis

vectors ~a1, ~a2 and ~a3 = ~a2 � ~a1.
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while the values [301,601] are for the left-handed tubules.

Among the three helices, two have the same handedness

and the third has opposite handedness. Therefore, though

the structure of carbon nanotubes is enantiomorphic, the

choice of absolute handedness is arbitrary.

When the handedness of a tubule is ignored, the helical

angle can be limited to [01,301]. Within this range, the chiral

indices (n,m) are limited to values n Z m Z 0.

The rotational symmetry of a nanotube can be recognized

by examining its chiral indices, (n,m). A carbon nanotube of

indices (n,m) has N-fold rotational symmetry, with N being the

greatest common divisor of n and m. When m = 0, the carbon

nanotube possesses n-fold rotational symmetry, and it does

not have a two-fold rotational symmetry when n is an odd

number. On the other hand, when a two-fold axis is present,

the carbon nanotube is also centrosymmetric.

There are two special non-helical structures that deserve

special attention. One is the so-called zigzag structure,

which has chiral indices of the form (n,0) with a helical angle

a = 01, as shown in Fig. 3(a); the other is the armchair

structure, which has indices of (n,n) with a helical angle a =

301, shown in Fig. 3(b). In the zigzag structure, the tubule axis

is (nc,mc) = (�1, 2) and in the armchair structure it is

(nc,mc) = (�1, 1).

Diffraction from a continuous helix

The electron scattering amplitude can be expressed by the

structure factor

Fðq!Þ ¼
Z

Vðr!Þ exp ð2piq! � r!Þdr!; ð16Þ

where V(~r) is the modified scattering potential proportional to

the Coulombic potential of the scattering object, ~q is the

scattering vector (q = 2sin(Y/2)/l) with Y and l being the

scattering angle and electron wavelength, respectively. The

physically measurable diffraction intensity I(~q) in the recipro-

cal space is I(~q) = |F(~q)|2. For the general case of kinematical

diffraction, where the Friedel’s law holds, the diffraction

intensity distribution is always centrosymmetric regardless of

the symmetry of the scattering potential, i.e., I(�~q) = I(~q). For

a cylindrical object like a nanotube, it is more convenient

to express the scattering amplitude in the polar coordinates

(R, F, l) (cf. Appendix)

FðR;F; lÞ ¼ 1

c

Xþ1
h¼�1

exp ih Fþ p
2

� �h i

�
Z c

0

Z 2p

0

Z 1
0

Vðr;f; zÞJhð2prRÞ

� exp i �hfþ 2plz
c

� �� �
rdrdfdz;

ð17Þ

where Jh(2prR) is the Bessel function of integer order h and c is

the structural periodicity of the tubular object in the direction

of its unique axis (z-direction).

As an example to illustrate the scattering of helical struc-

tures, Fig. 4(a) shows a right-handed continuous helix of

radius r0 and pitch length C. The scattering potential can be

expressed by

Vðr;f; zÞ ¼ V0dðr� r0Þd
2pz
C
� f

� �
ð18Þ

Using this potential, the scattering amplitude (17) becomes

FðR;F; lÞ ¼ r0V0Jlð2pr0RÞ exp i Fþ p
2

� �
l

h i
; ð19Þ

and the corresponding scattering intensity distribution is

IðR;F; lÞ ¼ FðR;F; lÞj j2¼ r20V
2
0 ½Jlð2pr0RÞ�

2; ð20Þ

which is plotted in Fig. 4(b).

There are two important characteristics in the Fraunhofer

diffraction pattern of a helix that deserve special mention. One

is that the intensity (eqn (20)) falls only on discrete lines (layer

lines) indexed by integer l; the other is that the intensity on a

layer line l is proportional to the square of the Bessel function of

order l.

When there are two helices, shown schematically in

Fig. 4(c), related by a twofold rotation axis, i.e.,

Vðr;f; zÞ ¼ V0dðr� r0Þ

� d
2pz
C
� f

� �
þ d

2pz
C
� fþ p

� �� �
;
ð21Þ

the scattering amplitude then becomes

FðR;F; lÞ ¼ r0V0Jlð2pr0RÞ
½1þ exp ðiplÞ� exp i Fþ p

2

� �
l

h i
;

ð22Þ

and the intensity distribution is

IðR;F; lÞ ¼ FðR;F; lÞj j2

¼
4r20V

2
0 ½Jlð2pr0RÞ�

2; l ¼ even;

0; l ¼ odd

8<
: :

ð23Þ

Fig. 3 (a) Carbon nanotube (18,0) (d = 1.409 nm and a = 01) of

zigzag structure; (b) nanotube (10,10) (d = 1.36 nm and a = 301) of

armchair structure.
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The layer lines of odd index l are in extinction, as shown in

Fig. 4(d).

When there is an N-fold rotation axis, the layer lines will be

in extinction except for those of indices equal to multiples of

N. Correspondingly, the diffraction intensity on layer line of

index l = sN is proportional to |JsN (2pr0R)|
2.

Electron diffraction from a nanotube

For a single-walled carbon nanotube of radius r0, where

the carbon atoms are located at discrete positions on a

helix of radius r0, as shown schematically in Fig. 5(a), the

corresponding structure factor can be expressed as (cf.

Appendix)

FðR;F; lÞ ¼
X
h

exp ih Fþ p
2

� �h i
Jnð2pr0RÞ

�
X
j

fj exp i �hfj þ
2plzj
c

� �� �
;

ð24Þ

where the summation for j is done over all atoms in a unit cell

and h over all integers as allowed by the selection rule. This is a

generic formula that is valid for all forms of nanotubes,

elemental or composite.

The structure factor (eqn (24)) can also be rewritten as

FðR;F; lÞ ¼
X
h

BhðR;FÞThl; ð25Þ

where

BhðR;FÞ ¼ exp ih Fþ p
2

� �h i
Jhð2pr0RÞ; ð26Þ

and

Thl ¼
X
j

fj exp 2pi
hxj

A
þ lzj

c

� �� �
; ð27Þ

Fig. 4 (a) Schematic of a continuous helix of pitch length C. (b)

Corresponding electron diffraction pattern of the continuous helix. It

consists of a set of layer lines separated by 1/C and the intensity on

layer line l is proportional to|Jl(X)
2|. (c) Two continuous helices with a

phase difference of p and (d) the Fraunhofer diffraction pattern where

the layer lines of odd indices are in extinction.

Fig. 5 (a) Schematic of a discontinuous helix where discrete groups of

scatterers (atoms) are located on a helix of pitch length C. The

periodicity of the structure and the separation between the neighbor-

ing molecular groups in the axial direction are given by c and D,
respectively. (b) The corresponding Fraunhofer diffraction pattern.
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with (xj, zj) being the atomic coordinates in radial projection in

the horizontal and axial directions, respectively. Herewith, the

diffraction effects from a cylindrical nanotube are more clearly

seen by examining the two parts in eqn (25): (i) The structure

factor in radial projection described by Thl, which gives rise to

the regular hexagonal diffraction pattern of graphene, and (ii)

the modifying function Bh(R, F) that describes the effects of

cylindrical curvature of the nanotube. The modifying Bessel

functions produce streaks perpendicular to the tubule axis and

also shift the diffraction intensity peak positions in the diffrac-

tion pattern. The shifts are dependent on the order of the

operating Bessel functions.39

Selection rule for helix diffraction

When individual atoms are located on a continuous cylindrical

helix, the scattering potential can be regarded as the product

of the continuous helix and a set of equally spaced planes of

spacing D, as illustrated in Fig. 5(a). The Fraunhofer diffrac-

tion from this structure can then be expressed by the convolu-

tion of the structure factor of the continuous helix and that of

the equidistant planes. Since the latter is just a row of points

located on the tubule axis with equal spacing 1/D, the final

result is a set of diffraction patterns of the single continuous

helix with origins located at each of the points on the tubule

axis, as shown schematically in Fig. 5(b). Choosing c as the

new structural periodicity along the tubule axis of a single

helix and C as the pitch length of the continuous helix (c Z

C), then the allowed reflections on layer line l should satisfy

l

c
¼ h

C
þ k

D
; ð28Þ

where k is an integer. For a given layer line l, the allowed

orders of Bessel functions Jh(2pr0R) are determined by com-

binations of h and all possible integers k that satisfy eqn (28).

The selection rule (eqn (28)) can also be expressed equivalently

as

l ¼ htþ kp; ð29Þ

where t= c/C gives the number of turns per unit periodicity in

the axial direction and p = c/D gives the number of scattering

units per complete period of the structure.

On the other hand, from the geometry in radial projection,

for the atomic helices parallel to basis vector ~a1we have

C ¼ A tan ðaÞ ¼ a0
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðn2 þm2 þ nmÞ

p
2nþm

;

D ¼ a0 sin ðaÞ ¼ a0
3m

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðn2 þm2 þ nmÞ

p ;

8>><
>>: ð30Þ

in terms of the chiral indices (n,m). The parameters t and p are

then

t ¼ c
C
¼ 2nþm

Mm
;

p ¼ c
D ¼

2ðn2 þm2 þ nmÞ
Mm

8><
>: ; ð31Þ

where M is the greatest common divisor of (2n + m) and

(n + 2m). The selection rule for nanotube (n,m) can therefore

also be expressed as

l ¼ h
2nþm

Mm
þ k

2ðn2 þm2 þ nmÞ
Mm

: ð32Þ

When the nanotube has rotational symmetry, the same selec-

tion rule applies if c is defined as the periodicity related to a

specific helix. The additional rotational symmetry will lead to

extinction layer lines. For a nanotube of N-fold rotational

symmetry, only l = sN(l = 0, �1, �2,. . .) are allowed layer

lines. Equivalently, this can be translated into additional

constraints on the selection rule. If we use the structural

periodicity, then the new periodicity will be shortened by N

times to become c/N, and the selection rule (eqn (29)) l= ht+

kp will limit the values of h and k to be multiples of N, while l

takes all possible integers.

It should also be noted that the selection rule given by eqn

(32) is derived for the specific helix parallel to basis vector ~a1.

When the structure of a carbon nanotube is expressed by other

helices (helices parallel to~a2 or~a3), the corresponding selection

rule will appear to be different in form for each of the helices,

but they are actually equivalent to each other.

Structure factor of a carbon nanotube

To calculate the scattering amplitude for a single-walled

carbon nanotube (n,m), it is more convenient to express its

atomic structure by the atomic helix pairs parallel to the basis

vectors ~a1, ~a2 and ~a3 = ~a1 � ~a2. For the m pairs of atomic

helices parallel to~a1 with atomic coordinates (xj
(1,0), zj

(1,0)) and

(xj
(1,1), zj

(1,1)), where

x
ð1;0Þ
j ¼ ja0 cos ðaÞ

z
ð1;0Þ
j ¼ �ja0 sin ðaÞ

(
; j ¼ 0; 1; 2; . . . ; nþm� 1: ð33Þ

and

x
ð1;1Þ
j ¼ x

ð1;0Þ
j � a0ffiffiffi

3
p cos ð30� � aÞ

z
ð1;1Þ
j ¼ z

ð1;0Þ
j � a0ffiffiffi

3
p sin ð30� � aÞ

8>>>><
>>>>:

;

j ¼ 0; 1; 2; . . . ; nþm� 1:

ð34Þ

the structure factor for the nanotube in radial projection is

Thl ¼
Xatoms

j

f exp 2pi
hxj

A
þ lzj

c

� �� �

¼ f
Xm�1
s¼0

exp 2pi
hx
ð3;0Þ
s

A
þ lz

ð3;0Þ
s

c

 !" #

�
Xnþm�1
j¼0

exp 2pi
hx
ð1;0Þ
j

A
þ
lz
ð1;0Þ
j

c

 !" #( )

� 1þ exp � 2pia0ffiffiffi
3
p h cos ð30� � aÞ

A
þ l sin ð30� � aÞ

c

� �� �� 	
:

ð35Þ
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By inserting

cosð30� � aÞ ¼
ffiffiffi
3
p
ðnþmÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þm2 þ nm
p

sinð30� � aÞ ¼ n�m

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þm2 þ nm
p

8>><
>>: ; ð36Þ

and the selection rule for the~a1 helices (eqn (32)) into eqn (35),

we then have

Thl ¼ ðnþmÞf
Xm�1
s¼0

exp 2pi
hx
ð1;0Þ
s

A
þ lz

ð1;0Þ
s

c

 !" #( )

� 1þ exp �2pi hþ ðn�mÞk
3m

� �� �� 	

¼ ðnþmÞf
Xm�1
s¼0

exp 2pis
hþ ðnþmÞk

m

� �

� 1þ exp �2pi hþ ðn�mÞk
3m

� �� �� 	

¼ ðnþmÞf 1� expf2pi½hþ ðnþmÞk�g
1� exp 2pi½hþ ðnþmÞkÞ=m½ �

� 1þ exp �2pi hþ ðn�mÞk
3m

� �� �� 	

¼
mðnþmÞf 1þ exp �2pi hþðn�mÞk

3m

� �h in o
when hþðnþmÞk

m
¼ N ðintegerÞ: 0; otherwise

8><
>: ;

ð37Þ

The structure factor can therefore be expressed as

FnmðR;F; lÞ ¼
X
h;k

f wnmðh; kÞgnmðh; kÞJhðpdRÞ exp ih Fþ p
2

� �h i
;

ð38Þ

where

wnmðh; kÞ ¼ðnþmÞ

� 1þ exp �2pi hþ ðn�mÞk
3m

� �� �� 	
;
ð39Þ

which describes the scattering amplitude from a single helix

pair parallel to ~a1, and

gnmðh; kÞ ¼
m; when½hþ ðnþmÞk�=m ¼ N ðintegerÞ
0; otherwise

�
;

ð40Þ

in which h, k and l are all integers that satisfy the selection rule

for carbon nanotube (n,m) stipulated by eqn (32).

Visually, it is the helices that have the smallest angle with

respect to the tubule axis that appear as the ‘‘helices’’. For this

reason, we can also choose the helices parallel to ~a2 in the

calculation of the structure factor. By inserting the atomic

positions for carbon nanotube (n,m), the scattering amplitude

(eqn (24)) becomes

FnmðR;F; lÞ ¼
X
h;k

f wnmðh; kÞgnmðh; kÞJhðpdRÞ exp ih Fþ p
2

� �h i
;

ð41Þ

where

wnmðh; kÞ ¼ð2n�mÞ

� 1þ exp �2pi hþ ð2nþmÞk
3n

� �� 	
;

ð42Þ

and

gnmðh; kÞ ¼
1� exp ½2piðhþmkÞ�

1� exp ½2piðhþmkÞ=n�

¼ n; if ðhþmkÞ=n ¼ N
0; otherwise

�
; ð43Þ

in which m, n, and l are all integers that satisfy the same

selection rule (eqn (29)) for carbon nanotube (n,m)

l ¼ ðnþ 2mÞhþ 2ðn2 þm2 þ nmÞk
Mn

; ð44Þ

with M being the maximum common divisor of integers

(2n + m) and (n + 2m). Eqn (44) is equivalent to eqn (32).

When the helices are counted in the direction of ~a3 =

~a2 � ~a1, then

FnmðR;F; lÞ ¼
X
h;k

f wnmðh; kÞgnmðh; kÞJhðpdRÞ exp ih Fþ p
2

� �h i
;

ð45Þ

where

wnmðh; kÞ ¼ ð2nþmÞ 1þ exp 2pi
h� ðnþ 2mÞk

3ðnþmÞ

� �� 	
; ð46Þ

and

gnmðh; kÞ ¼
1� exp ½2piðh�mkÞ�

1� exp ½2piðh�mkÞ=ðnþmÞ�

¼
nþm; if ðh�mkÞ=ðnþmÞ ¼ N

0; otherwise

(
;

ð47Þ

and the selection rule for the same carbon nanotube (n,m)

appears as

l ¼ ðn�mÞhþ 2ðn2 þm2 þ nmÞk
MðnþmÞ ; ð48Þ

which is equivalent to eqn (32) and (44).

The above equations are also valid for X-rays, when V(~r)

and f are replaced by the electron charge density function, r(~r),
and the atomic scattering amplitude for X-rays, f(x), respec-

tively.

Electron diffraction from multi-walled carbon nanotubes

An ideal multi-walled carbon nanotube consists of multiple

concentric shells with inter-tubular distances similar to the

inter-planar spacings of graphite (B0.335 nm). The structure

factor for a multi-walled carbon nanotube of N shells can be

expressed as the coherent sum of the scattering amplitudes
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from all individual shells in the multi-walled carbon nano-

tube73

FðR;F;ZÞ ¼
XN
j¼1

f dðZ � lj

cj
Þ
X
h;k

wjðh; kÞgjðh; kÞJhðpdjRÞ

� exp ih Fþ p
2

� �h i
exp ðijjÞ;

ð49Þ

where j denotes the j-th nanotube (nj,mj) of axial periodicity cj
and diameter dj, jj denotes the phase shift for the j-th shell

relative to the reference shell in real space and

wjðh; kÞ ¼ ðnj þmjÞ 1þ exp �2pi hþ ðnj �mjÞk
3mj

� �� 	
; ð50Þ

gjðh; kÞ ¼
1� exp �2pi hþ ðnj þmjÞk


 �� 

1� exp �2pi hþ ðnj þmjÞk

mj

� �

¼
mj ; if

hþ ðnj þmjÞk
mj

¼ integer

0; otherwise

8><
>: ;

ð51Þ

in which h, k and lj are all integers governed by the selection

rule for the j-th shell of the nanotube:

lj ¼
ð2nj þmjÞhþ 2ðn2j þm2

j þ njmjÞk
Mjmj

; ð52Þ

withMj being the maximum common divisor of (2nj +mj) and

(nj + 2mj).

The electron diffraction intensity distribution is I(R, F, Z)
= |F(R, F, Z)|2.
As a special case, for electron diffraction from single-walled

carbon nanotubes, the summation over j in eqn (49) disap-

pears (N = 1) and so does the subscript j in eqn (50–52).

Principal layer lines

On the electron diffraction pattern of a single-walled carbon

nanotube, the primary graphene reflections of Miller indices

(10), (01), (11), (�10), (0�1), and (�1�1), are of the strongest

intensity. These reflections form three pairs of layer lines (three

layer lines above the equatorial line and three below the

equatorial line), labelled l1 (formed by the graphene (01)

reflections), l2 (formed by the graphene (�10) reflections) and

l3 (formed by the graphene (11) reflections) with respective

layer line spacings D1, D2, and D3 relative to the equatorial

layer line. These three pairs of layer lines are referred to as the

principal layer lines and are schematically illustrated in Fig. 6.

It is experimentally most convenient to use these principal

layer lines to characterize the carbon nanotube. Due to the

very small diameter of carbon nanotubes, the diffraction peaks

are elongated perpendicular to the tubule axis and only

reflections close to the meridian have significant intensities.

In some cases, the reflections (1�1) and (�11) are also used, which

will be referred to in this article as layer line l4 with layer line

spacing D4.

Direct determination of chiral Indices (n,m)

It is important to note that, on each layer line, though the

scattering amplitude is expressed by a summation of all Bessel

functions that are allowed by the selection rule, there is usually

only one order of Bessel function that dominates the intensity

distribution on a particular layer line. All the others contribute

negligibly to the layer line intensity. We can deduce the above

conclusion from the selection rule. Under the constraints

governed by the selection rule, all the possible values of h

for one chosen layer line l can be expressed as follows71

h ¼ h0 þ
2Pðn2 þm2 þ nmÞ

M
; ð53Þ

where P are positive integers that also make h an integer, and

h0 defines the smallest non-negative integer for the chosen

layer line l. Because (n2 + m2 + nm)/M is always an integer,79

2P(n2 +m2 + nm)/M is usually a very large number. Since the

magnitude of Bessel functions decreases significantly with the

increase of their orders, the diffraction intensity on a particular

layer line is essentially dominated by a single Bessel function of

the lowest order h0. For example, for single-walled carbon

nanotube (14, 9) (d = 1.572 nm and a = 22.841), for the

principal layer line l1(l= 37), h0 = 9 and the next contributing

Bessel function is h1 = 797. The magnitude of the first peak

for |J9(x)|
2 is more than 20 times that for |J797(x)|

2. Further-

more, the first peak position of J797(x) on the layer line l1 is 75

times larger than that due to J9(x). Therefore, the diffraction

intensity distribution on the layer line l = 37 for carbon

nanotube (14,9) is only modulated by |J9(x)|
2 within the range

of collection where significant experimental data are present in

the reciprocal space.

The order of the primary operating Bessel function for a

given carbon nanotube (n,m) can be obtained by considering

the crystallographic indices of the graphene reflections using

the extended cell of the nanotube in radial projection, which is

related to the index, h. In the Fraunhofer diffraction pattern of

the graphene lattice, the allowed Bragg reflections are de-

scribed by

g
! ¼ h0a

!�
1 þ k0a

!�
2: ð54Þ

Fig. 6 Relationship between the principal graphene reflections (posi-

tioned at the six apices of the regular hexagons) and the principal layer

line reflections l1, l2, and l3 of a carbon nanotube. D1 and D2 are the

respective layer line spacings. Spotty graphene reflections become

streaks elongated in the directions perpendicular to the tubule axis.

a is the helical angle of the nanotube.
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For a given nanotube of chiral indices (n,m), the correspond-

ing nanotube reflections can also be indexed by the crystal-

lographic indices (h,l) related to its radial projection net.

Therefore, the selection rule should be such that the reflection
~G= h~A* + l~C* indexed using the radial projection net should

fall onto the reciprocal lattice point �g indexed using the

graphene lattice, where ~A* and ~C* are the basis vectors of

the reciprocal lattice of the radial projection net (rectangle

with sides ~A and ~C) of the nanotube:

A
!� ¼ 1

n2 þm2 þ nm
ðna!1 þma

!
2Þ

C
!� ¼

1

n2c þm2
c þ ncmc

ðnca!1 þmca
!
2Þ

8><
>: : ð55Þ

The selection rule can then be written as

G
!
¼ g
!
; ð56Þ

or

hA
!� þ lC

!� ¼ h0a
!�
1 þ k0a

!�
2: ð57Þ

Multiplying both sides of eqn (57) by ~a1, we obtain

hA
!� � a!1 þ lC

!� � a!1 ¼ h0; ð58Þ

or equivalently

ha0 cos ðaÞ
A

� lC�sin ðaÞ ¼ h0: ð59Þ

Note that [cf. Fig. 7]

lC� ¼ g sin ðg� aÞ; ð60Þ

where g is the angle between the basis vector ~a1 and the

concerned graphene reflection (h0k0). We can then obtain the

following relationship39

h ¼ h0nþ k0m; ð61Þ

As shown in Fig. 6, the three principal layer lines, l1, l2 and l3,

are formed by graphene reflections (01), (�10), and (11), respec-

tively. When choosing the reference graphene reflection as

(01), i.e., h0 = 0 and k0 = 1, the order of the dominating

Bessel function is

h ¼ m; ð62Þ

and for graphene reflection (�10)

h ¼ �n; ð63Þ

and for grapheme reflection (11)

h ¼ nþm; ð64Þ

Therefore, the operating Bessel functions on the three princi-

pal layer lines, l1, l2, and l3, are of orders m, –n, and n + m,

respectively.

The order of the dominant Bessel function on each of the

principal layer lines can also be understood by the formation

of the electron diffraction pattern from the three principal

helices that are parallel to ~a1, ~a2, and ~a3 = ~a2 � ~a1, respec-

tively. The numbers of helix pairs are m, n, and n + m,

respectively. From Fig. 6, one can see that the three principal

layer lines, l1, l2, and l3, correspond to these three helix pairs.

Therefore, the first non-extinction reflections due to these

three principal helices are expressed by the Bessel functions

of order m, n, and n + m, respectively.

The same conclusion can also be reached algebraically from

the selection rule.79

Therefore, the reflection intensities on the three principal

layer lines, designated as layer lines l1, l2, and l3 as shown in

Fig. 6, are related to the chiral indices (n,m) by

Il1ðRÞ / JmðpdRÞj j2; ð65Þ

Il2ðRÞ / jJ�nðpdRÞj2 ¼ jJnðpdRÞj2; ð66Þ

Il3ðRÞ / jJnþmðpdRÞj2; ð67Þ

and

Il4ðRÞ / jJ�ðn�mÞðpdRÞj2 ¼ jJn�mðpdRÞj2; ð68Þ

The order h of Bessel function Jh(X) can be determined by

examining the positions of its peaks, which are unique to each

order of Bessel function. An efficient and convenient means to

determine the order h of Bessel function Jh(X) is to examine

the ratio X2/X1 of the positions of its first two peaks located at

X1 and X2, respectively, or any other pair of peaks unique to

this Bessel function. The chiral indices (n,m) can therefore be

obtained directly by determining the order of Bessel function

Jm(X) and Jn(X) with X = pdR from the scattering intensity

distribution on layer lines l1 and l2, whose intensities are

proportional to |Jm(pdR)|
2 and |Jn(pdR)|

2, respectively. On

an experimental electron diffraction pattern, the positions of

the first two peaks, R1 and R2, can be measured and the ratio

R2/R1 = X2/X1 is independent on the camera length of the

electron microscope at which the electron diffraction pattern is

acquired.

This method allows a rapid and accurate assignment of the

chiral indices (n,m). From the electron diffraction pattern, the

chiral indices m and n can be obtained by comparing the ratio

R2/R1 = X2/X1 with the tabulated values given in Table 1 for

Bessel functions of order up to h = 30. For Bessel functions

J18(X) and J19(X), for example, the ratios of X2/X1 = R2/R1

are 1.266 and 1.256, respectively, and the difference is large

enough to be identified unambiguously. Using our current

method, we can obtain the peak positions with a precision of

Fig. 7 Schematic assisting the deduction of the order of the operating

Bessel function on a carbon nanotube of chiral indices (n,m). a1 is the

basis vector and g refers to a particular reflection of interest. A is the

perimeter vector and C is the axial vector of the nanotube. a is the

helical angle of the nanotube and g is the angle between vector g and

the basis vector a1.
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0.3%, which allows us to assign the chiral indices unambigu-

ously up to index 30 or nanotube diameter up to 4 nm.

Instead of using the positions of the first two peaks, other

variations of this method have also been used to obtain the

order of the operating Bessel functions.84

For non-helical nanotubes, i.e., zigzag and armchair nano-

tubes with chiral indices (n,0) and (n,n), respectively, overlap

of the principal layer lines occurs. For a zigzag nanotube of

indices (n,0), layer lines l2 and l3 overlap with each other and

its first principal layer line (l1) has an intensity distribution

proportional to |J0(pdR)|
2 and the second layer line (l2) has

intensity proportional to |Jn(pdR)|
2. For an armchair nano-

tube (n,n), the first layer line l1 and the second line l2 overlap

with intensities proportional to |Jn(pdR)|
2 and layer line l3 falls

on the equatorial line.

The major sources of error of this direct method are (i) low

signal/noise ratio due to the small number of atoms in the

scattering carbon nanotube and (ii) the identification of the

peak positions in the intensity distribution on the principal

layer lines. The signal/noise ratio can be enhanced by applying

longer exposure in acquiring the experimental electron diffrac-

tion pattern.

The above conclusions are valid only for normal incidence,

i.e., the incident electron beam is perpendicular to the nano-

tube axis. When the nanotube deviates from this normal

incidence by an angle b, illustrated schematically in Fig. 8,

corrections are needed for the deduction of the order of the

operating Bessel function. For an incident electron beam with

an inclination angle b, the structure factor becomes71

FnmðR;F; lÞ ¼
X
h;k

f wnmðh; kÞgnmðh; kÞ

� Jh pd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ l tan b

c

� �2
s0

@
1
A exp in Fþ p

2

� �h i
:

ð69Þ

When the tilt is taken into account, the chiral indices (n,m) can

still be derived using the direct method with a high accuracy

even when the nanotube is not oriented normal to the incident

electron beam.85

Ratio of chiral indices m/n

Since the atomic structure of carbon nanotube (n,m) is peri-

odic in the axial direction, the layer lines are sharp and the

respective layer line spacings, D1, D2, and D3, can be measured

accurately from the electron diffraction patterns. Although the

cylindrical curvature of the nanotube causes severe distortion

to the otherwise hexagonal electron diffraction pattern, the

layer line spacings will not change due to the cylindrical

curvature. The axial distances to the equatorial line, D1, D2,

D3 and D4, of the fundamental reflections that form the

principal layer lines can be calculated using the trigonometric

relations illustrated schematically in Fig. 6, where a is the

helical angle which is measured between the axial direction

and the graphene (01) reflection in the reciprocal space

D1 ¼ a�cos ðaÞ
D2 ¼ a�cos ð60� � aÞ
D3 ¼ a�cos ð60� þ aÞ
D4 ¼

ffiffiffi
3
p

a�cos ð30� � aÞ

8>><
>>: ð70Þ

The layer line spacings are also related by

D1 ¼ D2 þD3

2D1 ¼ D2 þD4

�
: ð71Þ

The helical angle, a, can be deduced from the ratio of the layer

line spacings45

a ¼ tan�1
2D2 �D1ffiffiffi

3
p

D1

� �
: ð72Þ

The ratio of the chiral indices m and n can be obtained by

inserting eqn (3) into eqn (70)88

m

n
¼ 2D2 �D1

2D1 �D2
: ð73Þ

When the principal layer line spacings D1 and D3 are mea-

sured, for example, in terms of these two layer line spacings,

Fig. 8 (a) Geometric relationship in electron diffraction from a

carbon nanotube when it is inclined by an angle, b, to the normal to

the nanotube axis. (b) Corresponding relationship in the reciprocal

space where the reflection intensities due to the nanotube are a set of

concentric halo rings equally spaced in the axial direction. (c) Cross-

sectional view of the diffraction in the reciprocal space, where the

diffraction plane intercepts the intensity halo rings. The observed

separation R on an experimental diffraction pattern is smaller than

the maximum value observed at b = 01. H is the vertical height of the

intercept measured from the center of the intensity rings.71

Table 1 Ratio of the second and the first peak positions of Bessel
functions

n X2/X1 n X2/X1 n X2/X1

1 2.892 11 1.373 21 1.239
2 2.197 12 1.350 22 1.232
3 1.907 13 1.332 23 1.226
4 1.751 14 1.315 24 1.218
5 1.639 15 1.301 25 1.211
6 1.565 16 1.287 26 1.206
7 1.507 17 1.275 27 1.201
8 1.465 18 1.266 28 1.196
9 1.428 19 1.256 29 1.192
10 1.398 20 1.247 30 1.188
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Table 2 List of m/n ratio, chiral indices (n,m), diameter (d), and helicity (a) of carbon nanotubes

m/n n m d(n,m) a m/n n m d(n,m) a m/n n m d(n,m) a m/n n m d(n,m) a

0.0000 u 0 0.000 0.1538 13 2 1.105 7.053 0.2759 29 8 2.640 11.857 0.4000 5 2 0.489 16.102
0.0333 30 1 2.389 1.626 0.1538 26 4 2.209 7.053 0.2778 18 5 1.641 11.927 0.4000 10 4 0.978 16.102
0.0345 29 1 2.311 1.682 0.1579 19 3 1.618 7.223 0.2800 25 7 2.282 12.008 0.4000 15 6 1.467 16.102
0.0357 28 1 2.233 1.740 0.1600 25 4 2.132 7.311 0.2857 7 2 0.641 12.216 0.4000 20 8 1.956 16.102
0.0370 27 1 2.154 1.804 0.1667 6 1 0.513 7.589 0.2857 14 4 1.282 12.216 0.4000 25 10 2.445 16.102
0.0385 26 1 2.076 1.872 0.1667 12 2 1.027 7.589 0.2857 21 6 1.923 12.216 0.4000 30 12 2.934 16.102
0.0400 25 1 1.998 1.945 0.1667 18 3 1.540 7.589 0.2857 28 8 2.564 12.216 0.4074 27 11 2.652 16.337
0.0417 24 1 1.920 2.024 0.1667 24 4 2.054 7.589 0.2917 24 7 2.205 12.432 0.4091 22 9 2.163 16.390
0.0435 23 1 1.841 2.111 0.1667 30 5 2.567 7.589 0.2941 17 5 1.564 12.520 0.4118 17 7 1.674 16.474
0.0455 22 1 1.763 2.204 0.1724 29 5 2.490 7.827 0.2963 27 8 2.487 12.598 0.4138 29 12 2.859 16.537
0.0476 21 1 1.685 2.307 0.1739 23 4 1.976 7.889 0.3000 10 3 0.923 12.730 0.4167 12 5 1.185 16.627
0.0500 20 1 1.607 2.419 0.1765 17 3 1.463 7.994 0.3000 20 6 1.846 12.730 0.4167 24 10 2.370 16.627
0.0526 19 1 1.528 2.543 0.1786 28 5 2.412 8.080 0.3000 30 9 2.770 12.730 0.4211 19 8 1.881 16.764
0.0556 18 1 1.450 2.680 0.1818 11 2 0.949 8.213 0.3043 23 7 2.129 12.885 0.4231 26 11 2.577 16.826
0.0588 17 1 1.372 2.833 0.1818 22 4 1.899 8.213 0.3077 13 4 1.205 13.004 0.4286 7 3 0.696 16.966
0.0625 16 1 1.294 3.004 0.1852 27 5 2.335 8.350 0.3077 26 8 2.411 13.004 0.4286 14 6 1.392 16.966
0.0667 15 1 1.216 3.198 0.1875 16 3 1.365 8.445 0.3103 29 9 2.693 13.098 0.4286 21 9 2.088 16.996
0.0667 30 2 2.431 3.198 0.1905 21 4 1.821 8.565 0.3125 18 5 1.488 13.174 0.4286 28 12 2.784 16.966
0.0690 29 2 2.353 3.304 0.1923 26 5 2.257 8.639 0.3158 19 6 1.770 13.289 0.4333 30 13 2.991 17.142
0.0714 14 1 1.137 3.418 0.2000 5 1 0.436 8.948 0.3182 22 7 2.052 13.373 0.4348 23 10 2.295 17.187
0.0714 28 2 2.275 3.418 0.2000 10 2 0.872 8.948 0.3200 25 8 2.335 13.436 0.4375 16 7 1.599 17.269
0.0741 27 2 2.197 3.540 0.2000 15 3 1.308 8.948 0.3214 28 9 2.617 13.486 0.4400 25 11 2.502 17.345
0.0769 13 1 1.059 3.670 0.2000 20 4 1.744 8.948 0.3333 3 1 0.282 13.898 0.4444 9 4 0.903 17.480
0.0769 26 2 2.119 3.670 0.2000 25 5 2.180 8.948 0.3333 6 2 0.565 13.898 0.4444 18 8 1.806 17.480
0.0800 25 2 2.040 3.811 0.2000 30 6 2.616 8.948 0.3333 9 3 0.847 13.898 0.4444 27 12 2.709 17.480
0.0833 12 1 0.981 3.963 0.2069 29 6 2.539 9.223 0.3333 12 4 1.129 13.898 0.4483 29 13 2.916 17.596
0.0833 24 2 1.962 3.963 0.2083 24 5 2.103 9.280 0.3333 15 5 1.412 13.898 0.4500 20 9 2.013 17.647
0.0870 23 2 1.884 4.128 0.2105 19 4 1.667 9.367 0.3333 18 6 1.694 13.898 0.4545 11 5 1.110 17.784
0.0909 11 1 0.903 4.307 0.2143 14 3 1.231 9.515 0.3333 21 7 1.976 13.898 0.4545 22 10 2.220 17.784
0.0909 22 2 1.806 4.307 0.2143 28 6 2.461 9.515 0.3333 24 8 2.259 13.898 0.4583 24 11 2.427 17.897
0.0952 21 2 1.728 4.502 0.2174 23 5 2.025 9.637 0.3333 27 9 2.541 13.898 0.4515 13 6 1.317 17.992
0.1000 10 1 0.825 4.715 0.2222 9 2 0.795 9.826 0.3333 30 10 2.823 13.898 0.4615 26 12 2.635 17.992
0.1000 20 2 1.650 4.715 0.2222 18 4 1.569 9.826 0.3448 29 10 2.747 14.290 0.4643 28 13 2.842 18.073
0.1000 30 3 2.475 4.715 0.2222 27 6 2.384 9.826 0.3462 26 9 2.465 14.335 0.4667 15 7 1.524 18.143
0.1034 29 3 2.397 4.869 0.2273 22 5 1.948 10.023 0.3478 23 8 2.183 14.392 0.4667 30 14 3.049 18.143
0.1053 9 2 1.572 4.950 0.2308 13 3 1.153 10.158 0.3500 20 7 1.900 14.465 0.4706 17 8 1.732 18.258
0.1071 28 3 2.319 5.033 0.2308 26 6 2.307 10.158 0.3529 17 6 1.618 14.564 0.4737 19 9 1.939 18.349
0.1111 9 1 0.747 5.209 0.2333 30 7 2.666 10.257 0.3571 14 5 1.336 14.705 0.4762 21 10 2.146 18.422
0.1111 18 2 1.494 5.209 0.2353 17 4 1.512 10.333 0.3571 28 10 2.672 14.705 0.4783 23 11 2.353 18.482
0.1111 27 3 2.241 5.209 0.2381 21 5 1.871 10.440 0.3600 25 9 2.389 14.800 0.4800 25 12 2.560 18.533
0.1154 26 3 2.163 5.397 0.2400 25 6 2.230 10.513 0.3636 11 4 1.053 14.921 0.4815 27 13 2.767 18.576
0.1176 17 2 1.416 5.496 0.2414 29 7 2.589 10.566 0.3636 22 8 2.107 14.921 0.4828 29 14 2.975 18.613
0.1200 25 3 2.085 5.559 0.2500 4 1 0.359 10.893 0.3667 30 11 2.878 15.021 0.5000 2 1 0.207 19.107
0.1250 8 1 0.669 5.818 0.2500 8 2 0.718 10.893 0.3684 19 7 1.825 15.079 0.5000 4 2 0.414 19.107
0.1250 16 2 1.338 5.818 0.2500 12 3 l.077 10.893 0.3704 27 10 2.596 15.143 0.5000 6 3 0.622 19.107
0.1250 24 3 2.007 5.818 0.2500 16 4 1.435 10.893 0.3750 8 3 0.771 15.295 0.5000 8 4 0.829 19.107
0.1304 23 3 1.929 6.053 0.2500 20 5 1.794 10.893 0.3750 16 6 1.542 15.295 0.5000 10 5 1.036 19.107
0.1333 15 2 1.260 6.178 0.2500 24 6 2.153 10.893 0.3750 24 9 2.314 15.295 0.5000 12 6 1.243 19.107
0.1333 30 4 2.520 6.178 0.2500 28 7 2.512 10.893 0.3793 29 11 2.803 15.436 0.5000 14 7 1.450 19.107
0.1364 22 3 1.851 6.309 0.2593 27 7 2.435 11.242 0.3810 21 8 2.031 15.490 0.5000 16 8 1.657 19.107
0.1379 29 4 2.443 6.376 0.2609 23 6 2.076 11.302 0.3846 13 5 1.260 15.608 0.5000 18 9 1.865 19.107
0.1429 7 1 0.591 6.587 0.2632 19 5 1.717 11.387 0.3846 26 10 2.520 15.608 0.5000 20 10 2.072 19.107
0.1429 14 2 1.182 6.587 0.2667 15 4 1.359 11.517 0.3889 18 7 1.749 15.746 0.5000 22 11 2.279 19.107
0.1429 21 3 1.774 6.587 0.2667 30 8 2.717 11.517 0.3913 23 9 2.238 15.824 0.5000 24 12 2.486 19.107
0.1429 28 4 2.365 6.587 0.2692 26 7 2.358 11.612 0.3929 28 11 2.727 15.874 0.5000 26 13 2.893 19.107
0.1481 27 4 2.287 6.812 0.2727 11 3 1.000 11.742 0.5000 28 14 2.900 19.107
0.1500 20 3 1.696 6.890 0.2727 22 6 1.999 11.742 0.5000 30 15 3.108 19.107
0.5172 29 15 3.034 19.591 0.6364 11 17 1.231 22.689 0.7500 4 3 0.476 25.285 0.8500 20 17 2.512 27.320
0.5185 27 14 2.827 19.626 0.6364 22 14 2.461 22.689 0.7500 8 6 0.953 25.285 0.8519 27 23 3.394 27.355
0.5200 25 13 2.619 19.667 0.6400 25 16 2.803 22.777 0.7500 12 9 1.429 25.285 0.8571 7 6 0.382 27.457
0.5217 23 12 2.412 19.715 0.6400 14 9 1.572 22.846 0.7500 16 12 1.905 25.285 0.8571 14 12 1.795 27.457
0.3238 21 11 2.205 19.773 0.6429 28 18 3.144 22.846 0.7500 20 15 2.382 25.285 0.8571 21 18 1.765 27.457
0.5263 19 10 1.996 19.842 0.6471 17 11 1.913 22.947 0.7500 24 18 2.858 25.286 0.8571 28 24 2.647 27.457
0.5294 17 9 1.791 19.927 0.6500 20 13 2.255 23.018 0.7500 28 21 3.334 25.285 0.8621 29 25 3.530 27.457
0.5333 15 8 1.584 20.034 0.6522 23 15 2.596 23.070 0.7500 24 18 2.858 25.285 0.8636 22 19 2.783 27.581
0.5333 30 16 3.167 20.034 0.6538 26 17 2.937 23.110 0.7586 29 22 3.469 25.469 0.8667 15 13 1.900 27.638
0.5357 28 15 2.960 20.099 0.6552 29 19 3.278 23.141 0.7600 25 19 2.993 25.498 0.8696 23 20 2.918 27.693
0.5385 13 7 1.376 20.174 0.6667 3 2 0.341 23.413 0.7600 25 19 2.993 25.498 0.8750 8 7 1.018 27.796
0.5385 26 14 2.753 20.174 0.6667 6 4 0.083 23.413 0.7619 21 16 2.517 25.539 0.8750 16 14 2.036 27.796
0.5417 24 13 2.546 20.260 0.6667 9 6 1.024 23.413 0.7647 17 13 2.040 25.598 0.8750 24 21 3.054 27.796
0.5455 11 16 1.169 20.363 0.6667 12 8 1.368 23.413 0.7667 30 23 3.605 25.639 0.8800 25 22 3.189 27.889

This journal is �c the Owner Societies 2007 Phys. Chem. Chem. Phys., 2007, 9, 31–48 | 41



the index ratio becomes

m

n
¼ D1 � 2D3

D1 þD3
: ð74Þ

On the other hand, if the layer line spacings D3 and D4 are

measured, then

m

n
¼ 1� 3D3

D4
: ð75Þ

In fact, when the layer line spacings D1 and D4 are accessible,

the result would be most accurate by using the following

calculation

m

n
¼ 3D1

D4
� 2; ð76Þ

eqn (73–76) offer a complimentary, and sometimes a more

convenient, method to determine the chiral indices (n,m) for

the following reasons:

(i) The ratio m/n is independent of the camera length at

which the electron diffraction pattern is taken;

(ii) The ratio is independent of the relative orientation

between the nanotube and the incident electron beam;

(iii) When the signal/noise ratio is low, this ratio can still be

conveniently obtained.

The use of eqn (73–76) can result in a very high accuracy.

The indeterminancy arising from the uncertainties these equa-

tions leads to only the nanotube of the smallest diameter

(n0,m0). Other nanotubes meeting the same equations have

chiral indices that are multiples of (n0,m0), i.e., (n,m) =

(jn0, jm0), where j = 1, 2, 3, . . . As can be seen from the

possible indices, the largest uncertainty comes from the nano-

tubes of chiral indices of (2m, m), where the difference in

diameter between the neighboring shells is 0.207 nm. This

diameter difference can be discerned from other information

such as the real-space electron micrographs. To aid the use of

this method, Table 2 lists all possible m/n values for chiral

indices up to (30,30).

Example 1: single-walled carbon nanotubes

The methods described above offer quick and accurate deter-

mination of the chiral indices of individual single-walled

carbon nanotubes in experiments. In practice, in order to

minimize radiation damage to the carbon nanotubes, it is

Table 2 (continued )

m/n n m d(n,m) a m/n n m d(n,m) a m/n n m d(n,m) a m/n n m d(n,m) a

0.5455 22 12 2.339 20.363 0.6667 15 10 1.707 23.413 0.7692 13 10 1.564 25.693 0.8824 17 15 2.171 27.933
0.5500 20 11 2.132 20.485 0.6667 18 12 2.048 23.413 0.7692 26 20 3.128 25.693 0.8846 26 23 3.325 27.975
0.5517 29 16 3.094 20.531 0.6667 21 14 2.369 23.413 0.7727 22 17 2.652 25.767 0.8889 9 8 1.153 28.055
0.5556 9 5 0.962 20.633 0.6667 24 16 2.731 23.413 0.7778 9 7 1.088 25.872 0.8889 18 16 2.307 28.055
0.5556 18 10 1.924 20.633 0.6667 27 18 3.072 23.413 0.7778 18 14 2.176 25.872 0.8889 27 24 3.490 28.055
0.5556 27 15 2.887 20.633 0.6667 30 20 3.413 23.413 0.7778 27 21 3.264 25.872 0.8929 28 25 3.596 28.128
0.5600 25 14 2.680 20.751 0.6786 28 19 3.207 23.691 0.7778 27 21 3.264 25.872 0.8947 19 17 2.443 28.163
0.5625 16 9 1.717 20.817 0.6800 25 17 2.865 23.724 0.7826 23 18 2.787 25.972 0.8966 29 26 3.732 28.196
0.5652 23 13 2.472 20.889 0.6818 22 15 2.524 23.780 0.7857 14 11 1.699 26.037 0.9000 10 9 1.289 28.259
0.5667 30 17 3.228 20.927 0.6842 19 13 2.183 23.822 0.7857 28 22 3.399 26.037 0.9000 20 18 2J578 28.259
0.5714 7 4 0.755 21.052 0.6842 19 13 2.183 23.822 0.7857 28 22 3.399 26.037 0.9000 30 27 2.578 28.259
0.5714 14 8 1.510 21.052 0.6875 16 11 1.841 23.897 0.7895 19 15 2.311 26.114 0.9048 21 19 2.714 28.346
0.5714 21 12 2.265 21.052 0.6897 29 20 3.341 23.947 0.7917 24 19 2.923 26.189 0.9091 11 10 2.714 28.346
0.5714 28 16 3.021 21.052 0.6923 13 9 1.500 24.007 0.7931 29 23 3.534 26.189 0.9091 22 20 2.849 28.425
0.5769 26 15 2.814 21.195 0.6923 26 18 3.000 24.007 0.7931 29 23 3.534 26.189 0.9130 23 21 2.985 28.497
0.5789 19 11 2.058 21.247 0.6957 23 16 2.659 24.084 0.8000 5 4 0.612 26.329 0.9167 12 11 1.560 28.562
0.5833 12 7 1.303 21.361 0.7000 10 7 1.159 24.182 0.8000 10 8 1.223 26.329 0.9167 24 22 3.120 28.562
0.5833 24 14 2.606 21.361 0.7000 20 14 2.318 24.182 0.8000 15 12 1.835 26.329 0.9200 25 23 3.256 28.622
0.5862 29 17 3.155 21.435 0.7000 30 21 3.476 24.182 0.8000 20 16 2.446 26.329 0.9231 13 12 1.696 28.677
0.5882 17 10 1.851 21.487 0.7000 20 14 2.318 24.182 0.8000 25 20 3.058 26.329 0.9231 26 24 3.392 28.677
0.5909 22 13 2.399 21.555 0.7037 27 19 3.135 24.266 0.8000 30 24 3.669 26.329 0.9259 27 25 3.527 28.728
0.5926 27 16 2.948 21.398 0.7059 17 12 1.976 24.315 0.8000 30 34 3.669 26.329 0.9286 14 13 1.831 28.728
0.6000 5 3 0.548 21.787 0.7083 24 17 2.794 24.370 0.8077 26 21 3.193 26.485 0.9286 28 26 3.663 28.775
0.6000 10 6 1.096 21.787 0.7143 7 5 0.818 24.504 0.8095 21 17 2.582 26.522 0.9310 29 27 3.798 2S.819
0.6000 15 9 1.644 21.787 0.7143 14 10 1.635 24.504 0.8125 16 13 1.970 26.582 0.9333 15 14 1.967 28.859
0.6000 20 12 2.193 21.787 0.7143 21 15 2.453 24.504 0.8148 27 22 3.329 26.628 0.9333 30 28 3.934 28.859
0.6000 25 15 2.741 21.787 0.7143 28 20 3.270 24.504 0.8182 11 9 1.359 26.696 0.9375 16 15 2.103 28.933
0.6000 30 18 3.289 21.787 0.7143 21 15 2.453 24.504 0.8182 22 18 2.717 26.996 0.9412 17 16 2.238 28.998
0.6071 28 17 3.082 21.967 0.7200 15 18 2.929 24.631 0.8214 28 23 3.464 26.760 0.9444 18 17 2.374 29.055
0.6087 23 14 2.534 22.006 0.7222 18 13 2.111 24.680 0.8235 17 14 2.105 26.802 0.9474 19 18 2.509 29.106
0.6111 18 11 1.986 22.066 0.7241 29 21 3.405 24.722 0.8261 23 19 2.852 26.853 0.9500 20 19 2.645 29.152
0.6154 13 8 1.437 22.173 0.7273 11 8 1.294 24.791 0.8276 29 24 3.599 26.882 0.9524 21 20 2.781 29.193
0.6154 26 16 2.875 22.173 0.7273 22 16 2.588 24.791 0.8333 6 5 0.747 26.995 0.9545 22 21 2.916 29.231
0.6190 21 13 2.327 22.264 0.7308 26 19 3.064 24.888 0.8333 12 10 1.494 26.995 0.9565 23 22 3.052 29.265
0.6207 29 18 3.216 22.304 0.7333 15 11 1.770 24.924 0.8333 18 15 2.241 26.995 0.9583 24 23 3.187 29.296
0.6250 8 5 0.889 22.411 0.7333 30 22 3.540 24.924 0.8333 24 20 2.988 26.995 0.9600 25 24 3.323 29.325
0.6250 16 10 1.779 22.411 0.7368 19 14 2.246 25.001 0.8333 30 25 3.735 26.995 0.9615 26 25 3.459 29.351
0.6250 24 15 2.668 22.411 0.7391 23 17 2.723 25.050 0.8400 25 21 3.123 27.126 0.9630 27 26 3.594 29.376
0.6296 27 17 3.009 22.525 0.7391 23 17 2.723 25.050 0.8421 19 16 2.376 27.167 0.9643 28 27 3.730 29.399
0.6316 19 12 2.120 22.572 0.7407 27 20 3.199 25.085 0.8462 13 11 1.629 27.245 0.9655 29 28 3.866 29.420
0.6333 30 19 3.351 22.015 0.8462 26 22 3.259 27.245 0.9667 30 29 4.001 29.439

1.0000 n n 30.000
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advisable to operate the transmission electron microscope at

80 kV. On the JEM-2010F TEM equipped with a field emis-

sion gun, the nanobeam electron diffraction patterns were

acquired with a parallel beam of 20 nm spot size obtained

with a smallest 10 mm condenser aperture and exciting the first

condenser lens to maximum. The nanobeam electron diffrac-

tion patterns were recorded either directly with a CCD cam-

era, or first on the photographic films, which were later

scanned digitally to obtain more accurate measurement of

the intensity distribution on the concerned layer lines. Fig. 9(a)

shows a nanobeam electron diffraction pattern of a single-

walled carbon nanotube of diameter B1.4 nm (a high-resolu-

tion electron microscope image is given as inset with 2 nm

scale bar). From the intensity profiles on the three principal

layer lines (l1, l2, and l3), the ratios R2/R1 = X2/X1 on layer line

l1 and l2 (Fig. 9(b) and (c)) were measured to be 2.200, and

1.279, respectively. The orders of the Bessel functions, and

thus the chiral indices of the nanotube, were determined to be

m= 2 and n= 17 (cf., Table 1). The solid line profiles given in

Fig. 9(b) and 9(c) are |J2(x)|
2 and |J17(x)|

2 (the intensity of

Fig. 9 (a) Electron diffraction pattern of carbon nanotube (17, 2). Inset is a high-resolution electron microscope image of the nanotube with a 2

nm scale bar. The three principal layer lines, l1, l2, and l3, are indicated in the figure. (b) Intensity profile of principal layer line l1. The ratio of the

positions of the second peak (X2) and the first peak (X1) is 2.190, corresponding to |J2(X)|
2, which is plotted as a solid line. (c) Intensity profile of

principal layer line l2. The ratio of the positions of the second peak (X2) and the first peak (X1) is 1.279, corresponding to the Bessel function

|J17(X)|
2, which is plotted as a solid line. The chiral indices of the nanotube are therefore (17, 2).48 (d) Simulated electron diffraction pattern of

nanotube (17, 2).
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Bessel functions of order 2 and 17, respectively) plotted on the

experimental intensity data to illustrate the excellent agree-

ment between the experimental intensity data and the intensity

profile given by the Bessel function of single order. Nanotube

(17, 2) is a metallic nanotube of diameter 1.418 nm and helicity

5.471. Fig. 9(d) shows the calculated electron diffraction of the

nanotube (17, 2), which again shows excellent agreement with

the experimental data, as expected.

Fig. 10 shows the electron diffraction pattern obtained from

another nanotube of similar diameter (image shown as inset

with scale bar 2 nm). Using the same method, the chiral indices

for this single-walled carbon nanotube were determined to be

(17,1), which is a semiconducting tubule of diameter 1.374 nm

and helicity 2.831.

When the diameter of the nanotube is large, the ratio of X2

and X1 for a Bessel function is closer to that of its neighbors.

In this case, layer lines l3 (formed by the graphene (11)

reflections) and/or l4 (formed by the (�11) graphene reflections),

whose intensity profiles correspond to |Jn+m(pdR)|
2 and

|Jn�m(pdR)|
2, respectively, can be used as supplementary in-

formation to narrow down the choices and minimize the

possible errors.

To improve the reliability and accuracy of the determination

of the chiral indices (n,m), one should always apply both the

direct measurement as well as the calculation of the index ratio

m/n using the principal layer line spacings.

Given the experimental limitations, using the ratio of layer

line spacings would give rise to results of highest accuracy. The

major errors in the measurement of helicity come from the

uncertainties in the measurement of the layer line spacings D1

and D2. In our current measurement, the errors of measuring

D1 and D2 are 0.009 nm�1. The errors in the deduction of the

chiral indices are no larger than 0.2%.

Example 2: bundles of single-walled carbon nanotubes

Single-walled carbon nanotubes tend to form raft-like bundles

when they are produced by laser evaporation or arc-dis-

charge.89–91 When they are packed in hexagonal closed pack-

ing, although their diameters are almost the same, it is not

known if the helicity of all tubules are also the same, although

theoretical arguments and the geometry seem to favor such a

case.89

For a bundle of single-walled carbon nanotubes of the same

diameter, the total scattering amplitude is the coherent sum of

all individual contributions

FT ¼
X
j

FjðR;F; ljÞ exp ð2pidjÞ; ð77Þ

where dj is the phase shift caused by relative rotation and

translation of the j-th nanotube relative to the reference

nanotube. Given the weak bonding forces between the neigh-

boring nanotubes, it is reasonable to assume that the above

mentioned two degrees of freedom will make the scattering to

a large extent incoherent. In this case, the resultant diffraction

intensity distribution will be approximately equal to the sum

of the individual scattering, in particular on the non-equatorial

layer lines l a 0.

Fig. 11(a) shows a model structure of a raft-like bundle of

single-walled carbon nanotubes. All nanotubes have similar

diameter and are closed hexagonal packed. Fig. 11(b) is an

electron micrograph of such a raft-like bundle of single-walled

carbon nanotubes produced by single-beam laser evapora-

tion.90 There are about fifty nanotubes of about the same

diameter in this bundle. Fig. 11(c) is an experimental electron

diffraction pattern obtained from the bundle of nanotubes.38

Letters A and Z indicate the positions of the reflection peaks

from the armchair and zigzag nanotubes, respectively. The

continuous distribution along the (10) and (11) reflection arcs

are symmetrical about the tubule axis, indicating that the

scattering tubules possess a rather uniform distribution of

helicity. The electron diffraction can be calculated using a

simplified model, as shown in Fig. 12(a). In this model, nine

nanotubes of about the same diameter (B1.4 nm) are arranged

in hexagonal closed packing. The electron diffraction intensity

distribution is displayed in Fig. 12(b). As expected, the in-

tensities are distributed rather evenly between the positions

corresponding to the zigzag and the armchair structures.

Example 3: multi-walled carbon nanotubes

For a multi-walled carbon nanotube, it is necessary to deter-

mine the chiral indices (nj,mj) for each individual shell. In

principle, while the methods detailed above are valid for multi-

walled carbon nanotubes where the inter-layer interferences

are not strong, due to the much larger diameter of multi-

walled carbon nanotubes, complementary information such as

eqn (72)–(76) is often very helpful to eliminate ambiguities.

When the layer lines are read from the digitized data, the

uncertainties in measuring the ratio m/n can be reduced to less

than 0.2%. Once all the chiral indices are determined, the

inter-tubular distances between the neighboring shells in the

nanotube can also be obtained.

Fig. 13 shows an electron diffraction pattern of a double-

walled carbon nanotube.79 As can be seen from the pattern,

there are now six pairs of principal layer lines across the

equatorial layer line due to the two shells of the nanotube.

The two sets of electron diffraction patterns are indicated by

Fig. 10 Electron diffraction pattern of nanotube (17,1). Inset is an

electron microscope image of the nanotube. The arrows point to the

peak positions on layer line l1 and l2, respectively. The chiral indices of

this nanotube was determined to be (17,1).48
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arrows in the figure. The chiral indices of the two shells are

determined to be (15,11) and (30,3), respectively. Their dia-

meter and helicity are (1.770 nm, 24.921) and (2.475 nm,

4.721), respectively, with an inter-layer spacing of 0.355 nm.

Fig. 14 shows an electron diffraction pattern of a triple-

walled carbon nanotube, where nine pairs of principal layer

lines are present.79 The chiral indices of the three shells are

determined to be (35,14), (37,25), and (40,34), respectively. All

three shells are metallic.

Fig. 15(a) shows the TEM image of a quadruple-walled

carbon nanotube and the corresponding electron diffraction

pattern of the nanotube is given in Fig. 15(b).50 From the

TEM image shown in Fig. 15(a), we can estimate that the

nanotube has an inner diameter and outer diameter of 2.6 nm

and 5.0 nm, respectively. The electron diffraction pattern of

this carbon nanotube, a magnified portion of which is shown

in Fig. 15(c), was used to deduce the chiral indices of each and

every shell of the nanotube. It is also interesting to note that

there are only three different helicities by examining the

number of principal layer lines indicated by the arrows in

the electron diffraction pattern due to the fact that two of the

four shells have the same helicity. By measuring the principal

layer line spacings in the electron diffraction pattern in Fig.

15(c), the m/n ratios were obtained as 0.031, 0.642, and 0.927,

corresponding to helical angles 1.531, 22.841, and 28.761,

respectively. Using the principal layer line l1 and the positions

of the intensity peaks on this layer line, the value of index m

can be deduced: m = 25 for the helicity of 22.841 and m = 24

for the helicity of 28.761. Combining with the m/n ratios

determined above, the chiral indices for these two nanotubes

are assigned to be (26,24) and (39,25), respectively, which are

neighboring shells in the nanotube.

Since there are four individual shells in the nanotube, two

shells must have the same helicity. These two shells are

identified by the modulations in the intensity distribution on

the layer line marked with red arrows (helicity = 1.531), which

Fig. 11 (a) Structural model of a bundle of single-walled carbon

nanotubes in closed hexagonal packing. (b) Electron microscope

image of a bundle of raft-like single-walled carbon nanotubes. (c)

Electron diffraction pattern of the bundle where the reflection inten-

sities form continuous arcs. Letters A and Z indicate positions of

reflection maxima due to the armchair and zigzag structures, respec-

tively.38

Fig. 12 (a) A model structure composed of nine carbon nanotubes of

about the same diameter. The chiral indices of each nanotube are also

given in the figure. (b) Calculated electron diffraction pattern of the

model structure. Continuous distribution of scattering intensities is

formed due to the rather uniform distribution of helicity in the

nanotubes.79
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indicate that two nanotubes have both contributed to these

layer lines and their chiral indices were determined to be (32,1)

and (64,2), respectively, by making use of the geometric

constraints of the concentric shells in the multi-walled carbon

nanotube. Fig. 15(d) shows the determined structure in side

view of the four shells of this nanotube with chiral indices

(32,1), (26,24), (39,25) and (64,2), whose cross-sectional view is

given in Fig. 15(e). All these shells are semiconducting. It is

worth noting that the inter-tubular distances are not of the

same value. They vary from 0.423 nm to 0.492 nm and to

0.358 nm from the outermost shell to innermost shell in the

nanotube.

The procedure presented here for determining the atomic

structure of the quadruple-walled carbon nanotube can be extended to multi-walled carbon nanotubes with fewer or

more shells. With the precision given in the present measure-

ment, up to nine shells (outer diameter up to 10 nm) have been

determined unambiguously.51 Once the atomic structure of a

multi-walled carbon nanotube is determined, we can predict

their physical and chemical properties, including identifying

which shell is metallic or semiconducting.

Conclusions

Rich information on the atomic structure is contained in the

principal layer lines formed by the graphene reflections (01),

(�10), and (11) (l1, l2, and l3 with respective layer line spacing

D1, D2 and D3) on an electron diffraction pattern of a carbon

nanotube. The chiral indices of individual carbon nanotubes

(n,m) can now be determined accurately using nano-beam

electron diffraction. The diffraction intensities on the principal

layer lines l1, l2, and l3 are proportional to the square of the

Bessel functions of orders m, n, and n + m: Il1 p |Jm
(pdR)|2,Il2 p |Jn (pdR)|

2, and Il3 p |Jn+m (pdR)|2. By identi-

fying the corresponding order of the Bessel function on the

principal layer lines l1 and l2, the chiral indices (n,m) can be

obtained. On the other hand, the ratio of the chiral indices can

Fig. 13 Electron diffraction pattern of a double-walled carbon

nanotube. Two sets of diffraction patterns, indicated by arrows, are

identified. The chiral indices of the two shells of this nanotube are

(15,11) and (30,3), respectively. Their diameter and helicity are (1.770

nm, 24.921) and (2.475 nm, 4.7151), respectively.79

Fig. 15 (a) TEM image of a quadruple-walled carbon nanotube. (b)

Corresponding electron diffraction pattern of the carbon nanotube. (c)

Magnified portion of the diffraction pattern marked in (b). Only three

sets of individual electron diffraction patterns can be identified due to

the overlapping of the diffraction patterns of two of them, indicating

that these two shells have the same helicity. (d) Side-view of the

structure of the quadruple-walled carbon nanotube. (e) Cross-sec-

tional view of the determined structure, where the chiral indices of

each shell are also indicated.50

Fig. 14 Electron diffraction pattern of a triple-walled carbon nano-

tube. The pattern consists of three sets of individual patterns due to the

three shells of the nanotube. The chiral indices of the three shells are

determined to be (35,14), (37,25), and (40,34), respectively. All shells

are metallic.79
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be obtained with a high accuracy from the measurable layer

line spacings n/m = (2D1 � D2)/(2D2 � D1) and the

chiral indices (n,m) could then be deduced with the aid of a

chart.

Appendix

In a polar coordinate system, the coordinates (r, f, z) are

related to the Cartesian coordinates (x, y, z) by the following

transformation

x ¼ r cos ðfÞ
y ¼ r sin ðfÞ
z ¼ z

8<
: : ðA1Þ

For the coordinates in reciprocal space, the corresponding

equations are

X ¼ R cos ðFÞ
Y ¼ R sin ðFÞ
Z ¼ Z

8<
: : ðA2Þ

The structure factor in the polar coordinate system is

FðR;F;ZÞ ¼
Z

Vðr!Þ exp ð2piq! � r!Þdr!

¼
Z þ1
�1

Z 2p

0

Z 1
0

Vðr;f; zÞ exp f2pi½rR cos ðf� FÞ þ zZ�grdrdfdz

¼
Z þ1
�1

Z 2p

0

Z 1
0

Vðr;f; zÞ exp ½2pirR cos ðf� FÞ� exp ð2pizZÞrdrdfdz

ðA3Þ

and this is a general expression for any object in a polar

coordinate system.

Introducing the Bessel function Jn of order n defined

by

2pinJnðuÞ ¼
Z 2p

0

exp ðiu cosfþ infÞdf; ðA4Þ

and the following relationships:

expðiu cosfÞ ¼
Xþ1
n¼�1

JnðuÞ exp inðfþ p
2
Þ

h i
ðA5Þ

J�nðuÞ ¼ ð�1ÞnJnðuÞ; ðA6Þ

we can obtain

FðR;F;ZÞ ¼
X
n

Z þ1
�1

Z 1
0

Vðr;f; zÞ exp ðinFÞ

�
Z 2p

0

Xþ1
n¼�1

Jnð2prRÞ exp in F� fþ p
2

� �h i
df

( )

� expð2pizZÞrdrdfdz

¼
X
n

exp in Fþ p
2

� �h i Z þ1
�1

Z 2p

0

Z 1
0

Vðr;f; zÞJnð2prRÞ

� exp ð�infþ 2pizZÞrdrdfdz:
ðA7Þ

When the potential V(r, f, z) has an N-fold rotation axis along

the z-direction, i.e.,

Vðr;f; zÞ ¼ V r;fþ 2p
N
; z

� �
; ðA8Þ

the Fourier expansion of V(r,f,z) can be written in the

following form

Vðr;f; zÞ ¼
X
n

VnNðr; zÞ exp ðinNfÞ; ðA9Þ

where

VnNðr; zÞ ¼
N

2p

Z 2p=n

0

Vðr;f; zÞ exp ð�inNfÞdf; ðA10Þ

and the structure factor becomes

FðR;F;ZÞ ¼ N
Xþ1
n¼�1

exp inN Fþ p
2

� �h i

�
Z þ1
�1

Z 2p

0

Z 1
0

Vðr;f; zÞJnNð2prRÞ

� expð2pizZÞ exp ð�inNfÞrdrdfdz:

ðA11Þ

If the object is periodic along the z-direction with periodicity c,

the Fourier expansion (eqn (A4)) can be written as

Vðr;f; zÞ ¼
Xþ1
n¼�1

Xþ1
l¼�1

VnlðrÞ exp �infþ 2pilz
c

� �
; ðA12Þ

and we can incorporate the z-components into the relevant

equations to obtain the following expression of the structure

factor:

FðR;F; lÞ ¼ 1

c

Xþ1
n¼�1

exp in Fþ p
2

� �h i

�
Z c

0

Z 2p

0

Z 1
0

Vðr;f; zÞJlð2prRÞ exp i �nfþ 2plz
c

� �� �
rdrdfdz:

ðA13Þ
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