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ABSTRACT

Richard Leigh Longland: Investigation of the s-Process Neutron Source 22Ne+α.
(Under the direction of Dr. Christian Iliadis.)

Neutron capture processes are associated with the production of most elements heavier than iron. The

s-process is one such scenario for this nucleosynthesis, in which neutrons are captured at a slower

rate than β-decay occurs, resulting in the enrichment of nuclei along the nuclear valley of stability.

An important reaction that can produce these neutrons is 22Ne(α,n)25Mg. Uncertainties in the rate of

this reaction and its competing 22Ne(α,γ)26Mg reaction hinder our understanding of nucleosynthe-

sis in AGB stars and massive stars, the favoured sites for the s-process. Without improved nuclear

physics input, constraints on the structure of these stars cannot be reliably applied from observational

evidence.

In the present study, the 22Ne+α reactions were investigated. A nuclear resonance fluorescence

experiment was performed on the compound 26Mg nucleus. The experiment used linearly polarised

photons to excite 26Mg and the emitted γ-rays were analysed to find the properties of excited states,

thus improving our understanding of the resonance properties for the 22Ne+α reactions. The findings

of the experiment were incorporated into a re-evaluation of literature data, in which rates and their

associated uncertainties were calculated with a novel Monte Carlo method. Rates on the order of

10 times lower than the literature values were obtained for the 22Ne(α,γ)26Mg reaction, while the
22Ne(α,n)25Mg was in agreement with the most recent results. The uncertainties of both reaction

rates were reduced by an order of magnitude.

In order to further clarify the current literature data, direct measurements of both reactions should

be performed in the future. In the present work, a novel method for determining the resonance strength

for the Elab
r = 479 keV resonance in 22Ne(p,γ)23Na was developed. This new strength of ωγ =

0.524(51) eV significantly reduces 22Ne target stoichiometry uncertainty, which was one of the largest

sources of uncertainty in direct 22Ne+α cross section measurements.
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1 Introduction

1.1 The s-Process

GALACTIC abundances of elements heavier than iron are difficult to explain using charged parti-

cle reactions that fuel stars. Charged particle reaction cross sections at energies corresponding

to hydrostatic stellar burning environments become prohibitively small for the creation of nuclei with

masses larger than A ≈ 60. At low temperatures, this is because the Coulomb barrier, which dom-

inates the nuclear reaction cross sections, increases dramatically with proton number. At high tem-

peratures, nucleosynthesis favours the nuclei residing around iron, which have the smallest binding

energy per nucleon. How were nuclei heavier than A ≈ 60 made? The answer to this question lies

in neutral particle reactions. Reactions involving neutrons are not limited by a Coulomb barrier and

therefore can have rather large cross sections, even at relatively low energies.

The seminal paper by Burbidge, Burbidge, Fowler and Hoyle [Bur57] envisioned two extreme

scenarios when considering neutron capture in stellar environments: one in which neutrons are cap-

tured relatively slowly, and one in which they are captured rapidly. These are known as the s- and

r-process, respectively. The s-process occurs when neutron capture occurs on a time scale that is

slower than the β-decay rate of unstable nuclei, while the r-process occurs at neutron capture rates

that are much larger than the β-decay rate, hence producing highly neutron rich nuclei. The r-process

is thought to be responsible for the production of long-lived, high mass nuclei such as 235U and 232Th

as well as the broad peaks visible in the solar system abundance distributions at masses of A ≈ 130

and A ≈ 190. For more discussion on the r-process, the reader is referred to Refs. [Bur57, Ili07] and

references therein.

Nuclei are produced in the s-process by slow neutron capture and β-decay as illustrated in Fig.
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Figure 1.1: The s-process path near the rubidium isotopes. Also shown are possible branchings (dashed arrows)
in the s-process path, which lead to differing abundance ratios between rubidium isotopes, depending on the
neutron flux.

1.1. Starting from 83Kr, for example, a neutron can be captured to produce the stable 84Kr isotope. A

further neutron capture produces 85Kr, which can either β-decay to 85Rb or capture another neutron

to produce 86Kr. Such locations are referred to as “branchings” in the s-process path. If a higher flux

of neutrons is available, the branching to 86Kr will be larger.

By considering solar system abundances of “s-only” nuclei (nuclei that can only be produced by

the s-process), it can be shown that there are two main contributions to s-process nucleosynthesis; the

“main” and the “weak” components. The main s-process component is responsible for the creation

of nuclei in the mass range of A ! 90, which requires a relatively low flux of neutrons over a long

time period. The weak component enhances abundances in the mass range of A " 90, which requires

an efficient neutron capture process, but only for a short period of time. In the following section, the

sites best describing these scenarios will be discussed.

1.2 Stellar Sites of the s-Process

1.2.1 AGB Stars

Asymptotic Giant Branch (AGB) stars are thought to produce the main component of the s-

process. Moderate mass stars (0.8M" < M < 8M"), including the sun, will all eventually be-
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Figure 1.2: Hertzsprung-Russel diagram of the evolution of a M = 5M! star [Hab04]. Plotted are the
luminosity of the star and the surface temperature, or colour. Note that temperature increases to the left of the
x-axis. The thick line is the evolutionary track of the star. Refer to the text for details on the labels.

come AGB stars with ages depending on initial mass. In the following, the evolution of a typical

M = 5M" star will be discussed by following the surface temperature and luminosity as the star

evolves. A Hertzsprung-Russel (HR) diagram of this evolution, which plots the luminosity of the star

against the surface temperature (colour) is shown in Fig. 1.2. Once the star has formed, and is burn-

ing hydrogen in the core, it will reside in a region on the HR diagram known as the main sequence

(straight line in Fig. 1.2). At point (1), high temperatures in the core cause the convective envelope

of the star to expand, leading to cooling on the surface. This happens because the stellar envelope is

opaque, and radiation released from nuclear reactions is absorbed by the inner layers of the envelope,

causing them to expand. Note that the star spends approximately 90% of its life on the main sequence.

At point (2), after on the order of 109 − 1010 years hydrogen in the core will be exhausted, and the

3
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star will move towards point (3) on the diagram before hydrogen shell burning ignites, expanding the

envelope once again. Between points (4) and (5) (the red giant branch), H-shell burning adds material

(4He) to the core, thereby increasing the temperature and pressure in the core until helium burning

is ignited at point (5), causing a rapid surface temperature increase as energy is deposited into the

envelope towards point (6). As helium is burned in the core, the envelope will expand once again to

point (7), where helium is exhausted in the core. At this point in the evolution of the star, helium and

hydrogen will burn intermittently in shells around a carbon-oxygen core through point (8). During

this final stage of evolution, the star will lose mass rapidly in the form of stellar wind, eventually

producing a planetary nebula. The carbon-oxygen core will remain as a white dwarf. In this pulsing

stage, the star appears very close to the red giant branch, giving these stars their name of Asymptotic

Giant Branch stars.

The internal structure of an AGB star is shown in Fig. 1.3. During this phase of the stars life,

hydrogen and helium are burning intermittently in shells surrounding the C-O core, separated by a

helium layer. The helium layer is the important region for the s-process. During the intermittent

burning stage, known as the Thermally Pulsing (TP) stage, the helium shell will burn in short bursts,

4



followed by long quiescent hydrogen burning stages. During each pulse, a dredge-up episode occurs,

which dredges processed material out of the helium shell and into the convective envelope of the star.

Thermal pulses are shown schematically in Fig. 1.4.

During a thermal pulse, while helium is being converted into 12C in the helium burning shell,

a convective zone between the helium and hydrogen shell arises. The convective zone mixes 12C

and 16O (He-burning ashes) into the helium layer, and adds protons from the hydrogen shell. The

sequence 12C(p,γ)13N(β+ν)13C can occur, thus creating a 13C rich pocket. The abundant helium can

then react with 13C to produce neutrons though the 13C(α,n)16O reaction. This reaction is one of the

main sources of neutrons in AGB stars, and because of the long time period and repeated exposures,

it is thought to be responsible for the majority of the main s-process component.

During the thermal pulse, temperatures in the base of the convective zone become high enough to

ignite a second neutron source, 22Ne(α, n)25Mg . The 22Ne is produced from 14N, which is in high

abundance in the star, via 14N(α,γ)18F(β+ν) 18O(α,γ)22Ne. This source is expected to produce a high

flux of neutrons, but only for a fraction of the time of the 13C source, especially for low mass AGB

stars. The 22Ne(α, n)25Mg reaction and its competing reaction 22Ne(α, γ)26Mg are therefore thought

to influence mainly the branchings in the s-process path. These branchings in the s-process track can

be analysed very precisely in pre-solar grains. Note that recent studies [Gar06, Lug08] of rubidium

enhancement in AGB stars suggest that in higher mass AGB stars, the 22Ne(α, n)25Mg reaction could

be the dominant s-process neutron source. Improved reaction rate estimates can help determine at

what mass the 22Ne+α reactions start to dominate the s-process neutron production.

1.2.2 Massive Stars

The lifetime of a massive star (M ! 11M") is considerably different than that of the lower

mass stars discussed previously. The HR diagram for a M = 25M" star is shown in Fig. 1.5. The

total lifespan of these stars is much shorter than that of lower mass stars (106 − 107 years [Ili07]),

most of which is spent burning hydrogen on the main sequence (part (1) in Fig. 1.5). Following core

hydrogen exhaustion, helium will be consumed in the core at point (2) until the star reaches point (3)

in the figure. The star will then remain at point (3) as a supergiant star, undergoing core carbon, neon,

oxygen, and finally silicon burning. Following silicon burning, the star will have a characteristic onion
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Figure 1.5: HR diagram for a M = 25M! star. The scale is not equal to that in Fig. 1.2. Massive stars are
some of the most luminous stellar objects. See Fig. 1.2 for a description of HR diagrams.

structure, with an iron core surrounded by layers of increasingly lighter nuclei. Eventually, the star’s

core will collapse, resulting in a supernova.

During the core hydrogen burning stage of a massive star, hydrogen is processed into helium via

the CNO-cycles. This process enriches the 14N content in the core to a mass density on the order

of 1% [Ili07, Arn96]. This enrichment occurs because 14N is a bottleneck in the CNO cycle. Once

core helium burning sets in, the 14N is processed into 22Ne through the reaction chain 14N(α,γ)18F

(β+ν)18O(α,γ)22Ne. This chain will enrich the 22Ne content of the star towards the end of the core

helium burning phase to approximately 22Ne:4He= 1 : 10. As the core temperature increases to

T ≈ 0.15 GK, the 22Ne(α, n)25Mg neutron source will start to produce neutrons, which drive the weak

component of the s-process. Note that any remaining 22Ne after core helium burning can produce a

second flux of neutrons during carbon burning (which produces additional α-particles). Massive stars

are thought to be responsible for the production of most 22Ne, and over 50% of the 25Mg and 26Mg
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in the universe [Arn96]. The s-process in massive stars is also thought to be a large contributor to

relatively rare nuclides, such as 36S, 37Cl, and 40Ar.

1.3 The 22Ne(α,n)25Mg s-Process Neutron Source

The 22Ne(α, n)25Mg and 22Ne(α, γ)26Mg reactions are important in s-process neutron produc-

tion. While the 22Ne(α, n)25Mg reaction is a neutron source, its competing 22Ne(α, γ)26Mg reaction

will serve to reduce the neutron flux available for the s-process, and is therefore equally important. In

massive stars, the reaction rates determine the neutron flux available for the weak component of the

s-process, while in AGB stars the reactions provide a high flux of neutrons for a short period of time,

affecting mainly branchings in the s-process path.

Since the early 1980’s, a number of studies have attempted to measure the cross sections of both

reactions in the energy region of interest. Direct measurements of the 22Ne(α, n)25Mg reaction were

made by Refs. [Wol89, Har91, Dro93, Gie93, Jae01b]. All of those studies but one (Ref. [Gie93]) were

performed using a gas target (the Rhinoceros system) at the Institut für Strahlenphysik in Stuttgart,

Germany. The lowest measured resonance is located at Elab
r = 832 keV, which resides at the upper

edge of the effective burning region for T = 0.3 GK. An additional Elab
r = 633 keV resonance

was believed to have been seen [Dro91], which was later determined to be background from the
10B(α,n)13N reaction [Dro93]. This expected resonance has provided a fair about of controversy in

the field (fuelled by the apparent need for a resonance in this energy region [The00]), and multiple

studies (including the present work) have attempted a search for it [Gie93, Jae01b, Uga07].

Although the 22Ne(α, γ)26Mg reaction plays an equally important role in neutron production,

it has been studied significantly less. The only study close to the energy region relevant in stellar

nucleosynthesis is that of Ref. [Wol89], which was performed in coincidence with an 22Ne(α, n)25Mg

measurement. The lowest measured resonance in this reaction was observed at Elab
r = 828 keV.

The 22Ne(α, n)25Mg and 22Ne(α, γ)26Mg reaction rates have significant uncertainties at the tem-

peratures of interest in AGB stars and massive stars (T ∼ 0.3 GK). The effects of these uncertainties

on nucleosynthesis have been studied in AGB stars and massive stars by Pignarari et al. [Pig05] and

The et al. [The00], respectively. Both studies find that the current uncertainties in these reactions

8



produce uncertainties of up to a factor of 10 in the abundances of key elements on the s-process path.

A recent re-evaluation of the rates of both reactions was made in Ref. [Kar06], which showed

significant uncertainties at the temperatures relevant for s-process neutron production in AGB stars.

Their result also showed that the uncertainties in the 22Ne(α, n)25Mg and 22Ne(α, γ)26Mg reaction

rates affect the production ratios of 25Mg and 26Mg significantly. This is especially important because

the magnesium isotopic ratios can be precisely measured in pre-solar grains [Zin05].

Observed branchings in the s-process path around rubidium [Bee89] from spectroscopic studies

of AGB stars also suggests [Gar06] that our current understanding of the mechanics of AGB stars is

incomplete. Their study showed that the 13C neutron source cannot provide the flux of neutrons nec-

essary to enhance rubidium. Constraints provided by those studies suggest that at lower metallicities,

the 22Ne(α, n)25Mg reaction could, indeed, be the main neutron source in AGB stars [Lug08]. With

improved understanding of the 22Ne(α, n)25Mg and 22Ne(α, γ)26Mg reaction rates, AGB star models

can be better constrained for calculation of the s-process.

In massive stars, the 22Ne(α, n)25Mg and 22Ne(α, γ)26Mg reactions directly influence the effi-

ciency of the weak s-process component. Sensitivity studies by Ref. [The00] have shown that the

rates of these reactions also influence the amount of 22Ne remaining in the core following helium

burning. Remaining 22Ne will later produce neutrons during the carbon burning stage. However, in

later stages, more neutron poisons will be present in the core, reducing the efficiency of the s-process

[Woo03]. This s-process efficiency was found to depend on several other factors including convec-

tion models used in the calculations. Improvements in nuclear physics input can, therefore, help to

constrain massive star models, and improve our understanding of these environments.

The neutron flux in stellar environments is an important factor influencing the amount of ma-

terial that is produced in the s-process. Consequently, the reaction rate of the neutron producing
22Ne(α, n)25Mg reaction and its competing 22Ne(α, γ)26Mg reaction must be well known if compar-

isons between nucleosynthesis models and observations are to provide us with reliable information on

the interior structure of stars. The goal of the current work is to improve our understanding of these

reactions.

An overview of experimental methods used in the present work will be given in Ch. 4. Detector

characterisation required to analyse cross section data reliably will be described. The production
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of targets used for direct cross section measurements will be detailed as well as other experimental

considerations relevant to the present work.

Studying excited states in the compound nucleus 26Mg can improve our understanding of possible

resonances that cannot be measured directly. A 26Mg(γ, γ)26Mg experiment performed to measure

the quantum numbers of excited states in the compound 26Mg nucleus will be described in Ch. 5.

Direct measurements of the 22Ne(α, γ)26Mg and 22Ne(α, n)25Mg reactions must be made to re-

solve inconsistencies in the data presented in the literature. In order to improve direct measurements,

target stoichiometries must be known to high precision. The analysis of excitation functions arising

from implanted targets, whose stoichiometry varies with depth in the target, is discussed in Ch. 3.

Using this formalism, a new excitation function analysis technique used to find the stoichiometry of

implanted 22Ne targets is discussed in Ch. 6. This new technique is essential for determining the

quantity of 22Ne available for 22Ne+α reaction cross section studies.

Improved statistical determination of reaction rates from measured quantities will improve the

definition of reaction rates used in stellar models. These improvements will clarify constraints on

processes occurring in these stars. The theoretical treatment of reaction rates in stellar environments

will be discussed in Ch. 2, along with a new formalism for calculating statistically meaningful un-

certainties on rates. This new formalism will then be applied to the calculation of the latest reaction

rates for the 22Ne(α, γ)26Mg and 22Ne(α, n)25Mg reactions, which is discussed in detail in Ch. 7.

Conclusions are formed in Ch. 8.
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2 Reaction Rates

2.0.1 Introduction

THERMONUCLEAR reaction rates describe the rate at which a nuclear reaction occurs in stellar

environments. Reaction rates are found by convoluting the cross section of a reaction with the

energy distribution of particles in the star. This convolution results in an average reaction rate per

particle pair for a given reaction, which is dependent on the temperature of the environment.

Reaction rate formalism is a well understood topic of nuclear astrophysics. The reader is referred

to Ref. [Ili07] for a more detailed discussion than is presented here. The uncertainties of reaction rates,

however, are poorly understood because of the complexity of the calculations involved. Prior to this

work, the most statistically rigorous treatment of reaction rate uncertainties was performed by Ref.

[Tho99]. Their method, however, was simplified to an analytical form by utilising statistical approxi-

mations, which are not valid in many cases. Their method also contained no statistically meaningful

treatment of upper-limits on reaction rate parameters (e.g., resonance strengths). Most astrophysically

important reactions occur at low bombarding energies. The Coulomb barrier at these energies causes

the reaction cross section to be small, hence many cross sections have not been measured at the en-

ergies corresponding to nuclear burning. Upper limit cross sections have historically been incorrectly

treated in reaction rate determination. In order to reliably predict reaction ra tes and their associated

uncertainties, upper-limit cross sections must be correctly treated.

In this chapter, a new formalism will be presented for calculating reaction rates and their associ-

ated uncertainties. Statistically meaningful definitions for high and low uncertainty boundaries will

be formed (in contrast to the old “upper limit” and “lower limit” reaction rates typically used by the

nuclear astrophysics community), and upper-limit quantities in the cross section will be given a sta-

tistically meaningful treatment. All energies in this chapter will be given in the centre-of-mass frame



unless otherwise stated. Only laboratory thermonuclear reaction rates will be considered (i.e., thermal

target excitations will be disregarded).

2.1 Reaction Rate Formalism

The reaction rate per particle pair in a medium of temperature, T , is given by

〈σv〉 =

√

8

πµ

1

(kT )3/2

∫ ∞

0
Eσ(E)e−E/kT dE (2.1)

where µ is the reduced mass of the reacting particles, µ = M0M1/(M0 + M1),; Mi refer to the

masses of the particles; k is the Boltzmann constant; E is the centre-of-mass energy between the

reacting particles; and σ(E) is the reaction cross section at relative energy, E. Inspection of Eq. (2.1)

reveals that the reaction rate is dependent on the cross section as a function of energy.

The strategy for determining reaction rates from Eq. (2.1) depends on the nature of the cross

section. Under the assumption of non-interfering cross section contributions1, the cross section can

be separated into non-resonant and resonant parts. Each contribution will be discussed separately in

the following sections.

2.1.1 Non-resonant Reaction Rates

Smoothly varying reaction cross sections can be written by

σ(E) =
1

E
e−2πηS(E) (2.2)

where η is the Sommerfeldt parameter, given by 2πη =
√

2µ
E Z0Z1e2/! (Zi is the atomic number

of the nuclei); and S(E) is the astrophysical S-factor. The S-factor is the slowly varying function of

energy that remains once the 1/E and s-wave Coulomb barrier penetration energy dependence are
1In cases where this assumption is not valid (e.g., when interference between rate contributions is significant), other

methods such as R-matrix theory must be used to calculate reaction rates.
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removed from the cross section2. Substituting Eq. (2.2) into Eq. (2.1), we obtain

〈σv〉 =

√

8

πµ

1

(kT )3/2

∫ ∞

0
e−2πηS(E)e−E/kT dE (2.3)

The integrand of this equation is dominated by two terms: the Gamow factor, e−2πη, and the Boltz-

mann factor, e−E/kT . The former of these increases with energy as e−
√

1/E , while the latter decreases

as e−E . The overlap between the tails of these functions produces the Gamow peak, which determines

the energy range at which reactions will occur in the stellar environment. The Gamow peak can be

approximated by a Gaussian function with centroid (E0) and 1/e width (∆E0) given by

E0 =0.1220

(

Z2
0Z2

1
M0M1

M0 + M1
T 2

9

)1/3

(2.4)

∆E0 =0.2368

(

Z2
0Z2

1
M0M1

M0 + M1
T 5

9

)1/6

(2.5)

where T9 is the temperature in GK. The astrophysical s-factor can be approximated by a Taylor ex-

pansion around zero energy

S(E) ≈ S(0) + S′(0)E +
1

2
S′′(0)E2 (2.6)

where the derivatives (S′(0) and S′′(0)) are with respect to E. Following this approximation, Eqs.

(2.2) and (2.6) can be substituted into Eq. (2.1) to provide an analytical expression for the reaction

rate:

〈σv〉nr =
4.339 × 108

Z0Z1

M0 + M1

M0M1
Seffe

−ττ2e(T9/T9, cutoff)2 (2.7)

τ = 4.2487

(

Z2
0Z2

1
M0M1

M0 + M1

1

T9

)1/3

(2.8)

Seff = S(0)

[

1 +
5

12τ
+

S′(0)

S(0)

(

E0 +
35

36
kT

)

+
1

2

S′′(0)

S(0)

(

E2
0 +

89

36
E0kT

)]

(2.9)

The last factor in Eq. (2.7) is an artificial addition to prevent this expression from becoming unphysical

at high temperatures (i.e., where the Gamow peak assumption is no longer valid, or where resonances
2Note that the notion of an astrophysical S-factor is also applicable to resonant cross sections. In these cases, however,

the S-factor will no longer be a smoothly varying function.

13



dominate the cross section).

2.1.2 Resonant Reaction Rates

The cross section arising from an isolated resonance is described by the Breit-Wigner formula

[Bre36],

σBW(E) =
λ2

4π
ω

Γa(E)Γb(E)

(E − Er)2 + Γ(E)2/4
(2.10)

Γa(E), Γb(E), and Γ(E) are the energy dependent entrance channel, exit channel, and total partial

widths respectively. The factor ω is the spin factor,

ω =
2J + 1

(2J0 + 1)(2J1 + 1)
(2.11)

where J and Ji are the resonance and particle spins, respectively; λ is the deBroglie wavelength at the

resonance energy defined by,
λ2

2
=

(π!)2

µE
(2.12)

Substituting the Breit-Wigner resonant cross section into Eq. (2.1), the reaction rate per particle pair

becomes

〈σv〉 =

√
2π!2

(µkT )3/2
ω

∫ ∞

0

Γa(E)Γb(E)

(E − Er)2 + Γ(E)2/4
e−E/kT dE (2.13)

Narrow Resonances

If the partial widths, Γi, and Boltzmann factor, e−E/kT , do not vary significantly with energy over

the width of the resonance, it can be considered to be narrow. The partial widths in Eq. (2.13) are then

replaced with energy independent quantities

〈σv〉 =

√
2π!2

(µkT )3/2
ωΓaΓb

∫ ∞

0

e−E/kT

(E − Er)2 + Γ(E)2/4
(2.14)

=

(

2π

µkT

)3/2

!
2ω

ΓaΓb

Γ
e−Er/kT , (2.15)
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where the resonance strength is defined by

ωγ = ω
ΓaΓb

Γ
(2.16)

Note that the resonance strength is proportional to the maximum cross section multiplied by the res-

onance width (ωγ ∝ σmax · Γ). Furthermore, the reaction rate for an ensemble of narrow resonances

can be summed incoherently,

〈σv〉 =

(

2π

µkT

)3/2

!
2
∑

i

(ωγ)ie
−Er/kT (2.17)

Wide Resonances

If the partial widths and Boltzmann factor vary significantly with energy, Eq. (2.13) must be

integrated numerically. In the following discussion, a transition to a unique final state will be assumed.

In reaction rate calculations, this assumption is a good approximation if the dominant transition is

considered. The particle partial width for channel c is

Γc(E) = 2
!2

µR2
Pc(E)θ2

c (2.18)

where the channel radius, R, is defined by R = 1.25(A1/3
0 + A1/3

1 ); θ2
c is the dimensionless reduced

width; and Pc(E) is the penetration factor calculated from Coulomb wave functions by

Pc(E) =
ρ

(F 2(E) + G2(E))
(2.19)

where ρ = 0.21874 ·R ·
√

µE; and F and G are Coulomb wave functions. The dimensionless reduced

width is proportional to a spectroscopic factor, S,

θ2
c = C2Sθ2

pc (2.20)

where C is an isospin Clebsch-Gordan coefficient and θ2
pc is the dimensionless single-particle reduced

width, which can be calculated numerically. See Ref. [Ili97] for more details on calculating this
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quantity.

From Eqs. (2.18)-(2.20), it becomes obvious that the energy dependence of charged particle cross

sections arises from the Coulomb barrier, whose energy dependence is described by the penetration

factor. The charged particle partial width can now be scaled with respect to the partial width at the

resonance energy, Er, by,

Γc(E) = Γc(Er)
Pc(E)

Pc(Er)
(2.21)

It should be noted that these equations can also be applied to subthreshold resonances.

The energy dependent partial width for a γ-ray follows a similar procedure. The γ-ray partial

width for a single transition is

Γγ(ω̄, Eγ) =
8π(L + 1)

L[(2L + 1)!!]2

(

Eγ

!c

)2L+1

B(ω̄L) (2.22)

where ω̄ denotes either electric or magnetic radiation; L is the multipolarity of the γ-ray; Eγ is the

transition energy; and the double factorial is defined as (2L + 1)!! = 1 · 3 · 5 . . . · (2L + 1). The γ-ray

partial width as a function of the incoming particle energy, E, is therefore

Γγ(E) = Γγ(Er)

(

E + Q − Ef

Er + Q − Ef

)2L+1

(2.23)

where Q is the entrance particle separation energy (Q-value) and Ef is the final excitation energy of

the γ-decay.

2.1.3 Interfering Resonances

If two or more broad resonances with the same spin and parity are close together in energy, their

amplitudes may interfere. In the case of two interfering resonances with cross sections σ1 and σ2,

respectively, the total cross section in the presence of interference is [Rol75]

σ(E) = σ1(E) + σ2(E) ± 2
√

σ1(E)σ2(E) cos(δ1 − δ2) (2.24)
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The phase shifts δi can be calculated by

δi = arctan

[

Γi(E)

2(E − Eri)

]

(2.25)

The reaction rate arising from two interfering resonances is found by substituting Eq. (2.24) into Eq.

(2.1) and integrating numerically. If interference is occurring between many resonances, (14N(p,γ)15O

is a good example), other methods such as R-matrix theory, must be used to find the reaction rate.

2.2 Monte Carlo Reaction Rates

The equations outlined in Sec. 2 provide an array of tools for calculating thermonuclear reaction

rates given estimates for the cross section parameters (Er, ωγ etc.). A problem arises, however, when

the uncertainties of the reaction rates are needed. With developments in computing power in the last

decade or so, the demand for statistically meaningful reaction rate uncertainties is increasing greatly.

It is becoming possible to perform stellar model calculations in relatively little time. This increase

in modelling speed allows sensitivity studies to be performed, in which the reaction rates are varied

within their uncertainties to find the influence on nucleosynthesis in stars.

In the present work, a Monte Carlo method is used to calculate the reaction rate uncertainties aris-

ing from uncertain input parameters. The general strategy of Monte Carlo uncertainty3 propagation

is the following: (i) Simultaneously sample from the probability density distribution for each uncer-

tain parameter (these samples must be chosen independently to avoid correlations); (ii) Perform the

calculation of the reaction rate using the sampled values and record it. (iii) Repeat steps (i)-(ii) many

times (on the order of 5000). These three steps will result in a distribution of reaction rates, which

can be interpreted as the probability distribution of the reaction rate. Extraction of uncertainties from

the distribution will be discussed later. While input parameter sampling is being performed, care must

be taken to consider correlations in parameters. For example, particle partial widths depend on the

penetration factor through Eq. (2.18), which is an energy dependent quantity. The individual energy

samples must, therefore, be propagated through the partial width calculation to fully account for the
3Throughout this work, care is taken to refer to the terms uncertainty and error correctly. The term error refers to a

quantity that is believed to be incorrect, whereas uncertainty refers to the statistical spread of a parameter.
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energy uncertainty correlation.

Note that Ref. [Tho99] states that a Monte Carlo method would take on the order of SN calcula-

tions to calculate uncertainties in this way (where S and N are the number of random samples and

uncertain parameters, respectively). However, this number of calculations is only necessary if the

contribution of each input uncertainty needs to be known. In the present work, only final reaction rate

uncertainties are desired, so the number of calculations needed is equal to the number of samples, S.

In order to proceed with using Monte Carlo sampling to calculate reaction rate uncertainties, the

sampling distributions must be defined for each uncertain parameter. A brief overview of statistical

distributions relevant to reaction rate calculation is in Appendix A. Once a reaction rate distribution

has been determined, an appropriate mathematical description must be found to present the result.

In the following, the statistical distributions used for each uncertain parameter will be discussed,

followed by details on the mathematical description used for the final reaction rate uncertainties.

2.2.1 Statistical Distributions for Nuclear Physics Input

Resonance Energies

Resonance energies are assumed to have Gaussian distributed uncertainties. The reasons for this

assumption are twofold. Firstly, most resonance energies are determined from the front edge of thick

target yield curves. In this case, the resonance energy is determined from a sum of uncertain pa-

rameters such as individual magnet calibrations. The central limit theorem states that the sum of n

independent continuous random variables xi with means µi and uncertainties σi becomes a Gaussian

random variable in the limit of n → ∞. Secondly, for low energy resonances the energy can be found

by measuring the excitation energy of the compound nucleus (E = Ex − Q). This case involves the

subtraction of two Gaussian distributed variables, which is also expected to be Gaussian. Note that

there is a finite probability of calculating a negative resonance energy. There is no contradiction in

this situation, because the resonance can be treated as a subthreshold resonance.
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Resonance Strengths

Resonance strengths are assigned lognormal uncertainties. To understand why this is, consider

the experimental methods for determining these quantities. A resonance strength is estimated by

one of two methods; (i) direct measurement, and (ii) estimation from partial widths determined in

other experiments (such as particle transfer measurements). In the first case, a resonance strength is

calculated from the product of many unknown quantities. An example of this is the resonance strength

determination from the maximum yield of a thick target for a (p,γ) reaction,

ωγ ∼ ε
Nγ

NpηW (θ)B
(2.26)

where ε is the stopping power, Nγ and Np are the number of measured γ-rays and incoming protons,

respectively, η is the detector efficiency, B is the branching ratio, and W is the angular correlation

for a detector at angle, θ. Each of these quantities are expected to have Gaussian uncertainties. The

central limit theorem states that the product of normally distributed quantities results in a lognormally

distributed quantity. The second case considered is also expected to have lognormally distributed

uncertainties because partial widths are determined through similar means as those described above.

Once a lognormal distribution has been selected to describe the probability distribution of reso-

nance strengths, an important question arises: how are quoted uncertainties converted into lognormal

parameters? To answer this question, first consider the expectation value and variance of a lognormal

distribution defined in Appendix A:

E[x] = e(2µ+σ2)/2, V [x] = e(2µ+σ2)
[

eσ2
− 1
]

(2.27)

where the lognormal parameters µ and σ represent the mean and standard deviation of lnx. The

lognormal parameters are, therefore, defined by

µ = ln(E[x]) −
1

2
ln

(

1 +
V [x]

E[x]2

)

, σ =

√

ln

(

1 +
V [x]

E[x]2

)

(2.28)

These parameters can now be found from literature values by associating quoted results with the
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expectation value and the square root of the variance.

Note that a lognormal distribution is not defined for negative values of x. This feature is advanta-

geous because it removes the finite probability of unphysical negative values that arise when Gaussian

uncertainties are used. This is especially true for partial width measurements, which typically have

uncertainties of close to 50% associated with them. A 50% Gaussian uncertainty results in a 5%

probability of the partial width being below zero.

Nonresonant S-factors

Nonresonant S-factors are calculated following the parametrisation outlined in Eq. (2.6). A log-

normal distribution is assumed for the effective S-factor, Seff. Typical uncertainties of 40% to 50%

are assumed for the nonresonant component of the cross section. Eq. (2.28) are used to convert these

to lognormal parameters.

Interfering Resonances

Frequently, the sign of interference between wide resonances (see Eq. (2.24)) is not known. A

binary distribution is sampled in this case, which will sample equally between signs of +1 and −1 as

the number of samples approaches infinity. This will lead to a double-peaked reaction rate probability

density function. Clearly, in these cases, the probability density function will not be described by a

simple analytical function. However, in most cases, this effect will be convoluted with other cross

section contributions, and the total reaction rate distribution will lose this double-peaked structure.

2.2.2 Upper Limits

The problem of calculating reaction rates using resonance strength upper limits will now be dis-

cussed. The standard practice in nuclear astrophysics is to assume that the best estimate of a reso-

nance strength is 10% of a measured upper limit. The assumption is then made that the true value

of the resonance strength has a uniform probability of residing between zero and the measured upper

limit. Upper and lower bounds on the resonance strength are calculated using these limits. These as-

sumptions imply a mean resonance strength value of exactly 1/2 of the measured upper limit, which
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contradicts the predictions of nuclear statistical models. In the present work, these models are taken as

a starting point to construct a physically motivated treatment of upper limits for resonance strengths.

Resonance strength upper limits arise from two possible situations. Firstly, a direct measurement

was performed with no observed signal above background. Secondly, an indirect measurement, such

as a transfer measurement was performed to measure a particle partial width. The latter case will be

discussed first.

Upper Limits of Partial Widths

Recall that particle partial widths are determined by the dimensionless reduced width, θ2, in Eqs.

(2.18) and (2.20). Similarly, γ-ray partial widths are determined from the reduced transition prob-

ability, B, in Eq. (2.22). These quantities are related to the square of nuclear Hamiltonian matrix

elements, which in turn is an integral over the nuclear configuration space. For sufficiently complex

wave functions, the matrix elements will arise from the sum over many contributions, each of which

has a randomly distributed sign. The central limit theorem, therefore, dictates that a nuclear matrix

element will have an expectation value of zero, with approximately Gaussian distributed uncertainties.

The square of the nuclear matrix element is, therefore, expected to have a probability density function

that follows a chi-squared distribution with one degree of freedom (See Apx. A). For a more detailed

discussion of this issue (including verification studies), the reader is referred to Refs. [Por56, Lon10].

The probability density function describing observables that are related to the squares of nuclear

matrix elements is known as a Porter-Thomas distribution, where the ratio of a variable to its local

mean value is given by the chi-squared distribution with one degree of freedom. The dimensionless

reduced width therefore, follows a probability density function given by

f(θ2) =
c√
θ2

e−θ2/(2〈θ2〉) (2.29)

where c is a normalisation factor, and 〈θ2〉 is the average local mean value of the reduced width. That

is, the mean value of the dimensionless reduced width for a specific nucleus, channel spin, orbital

angular momentum etc. The problem in using the Porter-Thomas distribution for the calculation of

partial width probability density functions now becomes one of collecting enough data to find 〈θ2〉
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for every case needed. In the present work, the partial widths were obtained from the data presented

in Ref. [Dra94] and references therein. The widths (1127 proton widths and 360 α-particle widths)

were averaged globally because of the lack of available data for local fits of every l-value, nucleus

and so on. More detail is presented in Refs. [New10a, Lon10]. The average values were found to be

〈θ2
p〉 = 0.0045 and 〈θ2

α〉 = 0.010 for protons and α-particles, respectively.

Although, in principle, the same arguments can be made for γ-ray reduced transition probabilities,

estimates for the mean value, 〈B〉, were more elusive. However, upper limits for γ-ray partial widths

are less crucial in reaction rate calculations and were, therefore, omitted from the present work.

Now that a form for the probability density function of reduced widths has been defined, the

question of including experimental upper limits can be addressed. Frequently, an experiment will

measure an upper limit for a spectroscopic factor, which can be converted to a reduced width through

Eq. (2.20). It should be clear that these upper limits, as with any experimental results, have some

probability density function associated with them. However, probability density functions for upper

limit measurements are rarely reported in the literature. In the absence of more information, the

present work will use a sharp truncation of the Porter-Thomas distribution at the upper limit. That is

f(θ) =











c√
θ2

e−θ2/(2〈θ2〉) if θ2 ≤ θ2
ul

0 if θ2 > θ2
ul

(2.30)

where θ2
ul is the measured upper limit of the reduced width.

Upper Limits on Resonance Strengths

During a direct search for a resonance, an upper limit can also be reported if no signal is observed.

The calculation of upper limits and their corresponding confidence limits is a well studied subject.

The reader is referred to Refs. [Nar00, Zhu07, Cou08] and references therein for an introduction to

the subject. In the field of nuclear astrophysics, however, confidence limits are rarely quoted. In the

present work, the following strategy for incorporating upper limits from direct searches is used: (i) the

upper limit, ωγul, is assumed to arise from the entrance particle partial width, Γa,ul (this is a reasonable

assumption for charged particle reactions at low energies, where cross sections are determined by the
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Coulomb barrier); (ii) the partial width is used to calculate a reduced width upper limit, θ2
ul; (iii) the

probability density function used for sampling is calculated from Eq. (2.30).

At this point, all of the necessary probability density functions needed for Monte Carlo reaction

rate calculations are described. The next step is to perform the calculations, and analyse the reaction

rate distributions.

2.2.3 Monte Carlo Sampling and Analysis

The general strategy for Monte Carlo uncertainty propagation was outlined at the beginning of this

section. In Sec. 2.2.1, the statistical distributions to be sampled for each input parameter were chosen.

A computer code, RatesMC, was written to perform the Monte Carlo sampling over the distributions

and to analyse the final rate distribution. The code is capable of calculating reaction rates through any

of the methods described in Sec. 2.1, including integration of wide resonances and interfering pairs

of resonances. Upper limits in resonance parameters are treated according to the method described in

Sec. 2.2.2.

Once the reaction rate sampling has been performed, an ensemble of final reaction rates exits. It

will have a probability density distribution that can be analysed to extract descriptive statistics (mean,

median, variance etc.). An example of a reaction rate probability density distribution for 10,000

samples is shown in Fig. 2.1 for the reaction rate arising from a fictitious resonance in 22Ne(α, γ)26Mg

at Er = 300(15) keV with ωγ = 4.1 ± 0.2 eV at a temperature of T = 0.45 GK. Part (a) shows a

histogram of the reaction rate probability density distribution and shows clearly a lognormal shape.

Part (b) shows the cumulative distribution, which is obtained by summing each bin in part (a), and

normalising to a maximum height of unity. Part (b) also illustrates the method utilised to obtain

reaction rate uncertainties from the distribution. For the recommended reaction rate, the median

reaction rate is used. The median is a useful statistic because exactly half of the calculated rates are

lying above this value and half below. Note that the mean is not used for the final presentation of

rates in the present work because it is strongly affected by outliers in the reaction rate distribution.

Thus it was decided that the mean rate was not a good representation of the recommended rate. The

low and high (not the “maximum” and “minimum” rates commonly used in nuclear astrophysics)

reaction rates are obtained by considering a 68% coverage probability. There are several methods for
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Figure 2.1: Reaction rate probability density distribution and corresponding cumulative distribution from the
fictitious resonance described in the text. The dashed lines show the 16th, 50th, and 84th percentiles of the
reaction rate.
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obtaining these coverage probabilities, such as finding the coverage that minimises the range of the

uncertainties, or one that is centred on the median. In the present work, the 16th to 84th percentiles

are used. Note that in reality, the reaction rates are not initially binned when calculating a cumulative

distribution to avoid the loss of information that arises from the binning process [Pre07].

Although a low, high and median rate are useful quantities, they do not necessarily contain all the

information on the probability density. It was mentioned already that computational stellar modelling

is becoming advanced enough that sensitivity studies on nuclear reaction rates are feasible. For these

sensitivity studies to produce reliable results, the reaction rates should be sampled according to the

probability density. It would be inconvenient, however, to publish histograms of the reaction rates (for

every reaction, at each temperature, with 1000 bins each). A more convenient approach would be to

approximate the reaction rate probability distribution with a simple analytical function. In order to find

such a function, consider the following three examples: (i) the reaction rate is dominated by a non-

resonant S-factor. Hence, the reaction rate is directly proportional to Seff in Eq. (2.7), which in turn is

described by lognormal uncertainties. (ii) the rate is dominated by a single resonance. If the resonance

strength dominates the uncertainties, the reaction rate will be distributed according to a lognormal

probability distribution. If the resonance energy (normally distributed) dominates the uncertainties,

the rate will also be distributed lognormally. This is because the resonance energy enters through

an eEr term; (iii) finally, consider the case where the rate has contributions from many resonances.

The central limit theorem states that the sum of many uncertainties will be distributed according to a

Gaussian. However, a lognormal distribution approximates a Gaussian well for uncertainties of less

than about 20%. Although these examples do not offer proof that the reaction rate can be described by

a lognormal distribution, they suggest that in most cases, it is a good approximation. The calculation

of the lognormal parameters for the reaction rate distribution now becomes a trivial matter. The

lognormal parameters are calculated by

µ = E[ln(x)], σ2 = V [ln(x)] (2.31)

where E[y] and V [y] signify the expectation value and variance of their argument, y, respectively. The

expressions in Eq. (2.31) were used to generate the smooth line in Fig. 2.1a, which shows excellent
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T (GK) Low rate Median rate High rate lognormal µ lognormal σ A-D
0.100 4.23×10−10 2.41×10−09 1.37×10−08 -1.985×10+01 1.75×10+00 2.77×10−01

0.110 1.02×10−08 4.95×10−08 2.40×10−07 -1.682×10+01 1.59×10+00 2.75×10−01

0.120 1.43×10−07 6.08×10−07 2.59×10−06 -1.431×10+01 1.46×10+00 2.73×10−01

0.130 1.32×10−06 5.02×10−06 1.91×10−05 -1.220×10+01 1.34×10+00 2.72×10−01

0.140 8.79×10−06 3.04×10−05 1.05×10−04 -1.040×10+01 1.25×10+00 2.70×10−01

0.150 4.52×10−05 1.44×10−04 4.58×10−04 -8.845×10+00 1.17×10+00 2.68×10−01

0.160 1.88×10−04 5.57×10−04 1.65×10−03 -7.491×10+00 1.09×10+00 2.65×10−01

0.180 2.00×10−03 5.23×10−03 1.38×10−02 -5.250×10+00 9.72×10−01 2.61×10−01

0.200 1.30×10−02 3.10×10−02 7.40×10−02 -3.473×10+00 8.75×10−01 2.57×10−01

0.250 3.60×10−01 7.20×10−01 1.45×10+00 -3.254×10−01 7.00×10−01 2.49×10−01

0.300 3.13×10+00 5.59×10+00 10.00×10+00 1.723×10+00 5.84×10−01 2.47×10−01

0.350 1.41×10+01 2.33×10+01 3.84×10+01 3.150×10+00 5.01×10−01 2.48×10−01

0.400 4.27×10+01 6.62×10+01 1.03×10+02 4.193×10+00 4.39×10−01 2.51×10−01

Table 2.1: Example reaction rates for the fictional 22Ne(α,γ)26Mg reaction described in the text.

agreement with the shape of the distribution (the reader should be aware that this is not a fit to the

data, but the solid line is calculated directly from Eqs. (2.31)). A good measure of the applicability of

a lognormal approximation is the Anderson-Darling statistic4. tAD, is calculated by

tAD = −n −
n
∑

i=1

2i − 1

n
(lnF (yi) + ln [1 − F (yn+1−i)] (2.32)

where n is the number of samples, yi are the samples (arranged in ascending order), and F is the

cumulative distribution of a standard normal function (i.e., a Gaussian centred on zero). Although,

statistically speaking, an A-D value greater than unity represents deviation from a lognormal distri-

bution, in the present work it was found that the distribution does not visibly deviate from lognormal

until A-D exceeds tAD ≈ 30. The A-D statistic is published along with all other values to provide

a reference to the reader. An example reaction rate output table for the fictitious reaction discussed

above is shown in Tab. 2.1. Note that tAD is less that unity at all temperatures. This good agreement

supports argument (ii) above.
4The Anderson-Darling statistic is more useful than a χ

2 statistic because it does not require binning of the data, which
results in a loss of information as previously described.
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2.3 Conclusions

A Monte Carlo reaction rate uncertainty propagation code, RatesMC has been written to compute

reaction rates. The code is capable of calculating the reaction rate arising from non-resonant S-factors,

narrow resonances, wide resonances, subthreshold resonances, and interfering resonance pairs. Upper

limits in particle partial widths have been treated in a statistically meaningful manner for the first

time. The code calculates a reaction rate distribution at a range of temperatures from T = 0.01 GK

to 10 GK, which is suitable for all astrophysical situations. At each temperature, six parameters are

output; the low, median, and high reaction rates; two parameters (µ and σ) describing the position

and spread of a lognormal approximation; and an Anderson-Darling statistic to describe how well the

lognormal approximation follows the rate distribution.

The code will be used as a specific example to calculate the reaction rates of 22Ne(α, γ)26Mg and
22Ne(α, n)25Mg in Ch. 7. For a more detailed discussion of the Monte Carlo method, which is outside

the scope of this work, the reader is referred to Ref. [Lon10].
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3 Yield Curve Analysis

3.1 Introduction

NUCLEAR reaction cross sections are needed to calculate thermonuclear reaction rates (see chap-

ter 2). In an experiment, the quantity measured is a yield, not the cross section. The yield is a

convolution of the cross section with other factors such as the beam energy spread and a finite target

thickness. The study of yield curves is important for: (i) deriving an unknown cross section from a

measured yield; and (ii) obtaining the depth concentration profile of a target if the cross section is well

known.

The study of a target as a function of depth is known as depth profiling. Depth profiling with nar-

row nuclear resonances is a particularly useful non-destructive method of probing targets, which has

become more powerful with improvements in computing power in the last few decades Ref. [Mau82].

Advanced deconvolution methods for obtaining the distribution of nuclei in a substrate are summarised

in Ref. [McG91]. The depth profiling formalism will be discussed in the following. All energies are

in the centre-of-mass frame unless otherwise stated.

3.2 Excitation Functions from Nuclear Resonances

An excitation function for a nuclear reaction is obtained by measuring the yield over a range of

incident beam energies. The measured yield is defined as:

Yield =
Number of reactions

Number of incident particles
(3.1)



For a radiative capture reaction, the experimental yield (Y ) can be calculated by measuring the inten-

sity of γ-rays with a germanium detector:

Y =
e

εp W (θ)B

I

Q
, (3.2)

where e is the elementary charge; εp is the full-energy peak efficiency for the measured γ-ray; W (θ)

is the angular correlation function at detector angle θ with respect to the beam direction; B is the

cross section fraction that is carried by the observed γ-ray (e.g., the branching ratio for a primary

transition); I is the number of counts observed in the full-energy peak; and Q is the measured beam

charge accumulated on the target.

The yield depends on the measured cross section as well as on the nature of the target containing

the reacting nuclei. Understanding the effect of the target on the measured yield is critical for extract-

ing resonance strengths or cross sections from excitation functions. For a target with a varying atomic

concentration with depth, the yield will depend on the location in the target where the reactions occur.

For narrow resonances, most of the reactions will occur at a depth determined by the incident beam

energy and the energy loss in the target. A finite beam resolution and energy straggling of the incident

beam in the target serve to broaden the excitation function.

In the following, an implanted target will be considered. Implanted targets consist of a substrate

(“target backing”), into which target nuclei have been implanted. This is usally performed by acceler-

ating the ions of interest, and focusing them onto the substrate. The number of reactions originating

from a nuclear reaction in an implanted target per incident beam particle is given by [Mau82]:

Y (E0) =

∫ ∞

0
dE

∫ ∞

0
dx [C(x)σ(E)g0(E; E0; x)] (3.3)

where C(x) is the concentration profile of the target nuclei (cm−2); σ(E) is the cross section of the

reaction at energy, E; and g0(E; E0; x) is the energy spread law (i.e., the probability) of a beam

particle having an energy of E, given an average incident energy, E0, at depth x. The beam spread

at the surface of the target (x = 0) is the beam spread of the incident beam, with the energy spread

increasing due to straggling as the beam traverses the target. The beam energy spread in the target
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can be expressed as a convolution of two functions: h(E0), which describes the beam spread of the

incident beam; and g(u; x), which describes the straggling of the beam energy (the probability density

function of the beam particles having an energy u at depth x). Equation (3.3) can now be expressed

as a set of convolution integrals:

Y (E0) = σ(E0) ∗ h(E0) ∗
∫ ∞

0
N(x)g(E0; x)dx (3.4)

Convolution integrals are defined as:

a(x) ∗ b(x) ≡
∫ ∞

−∞
a(x − x′)b(x′)dx′ (3.5)

=

∫ ∞

−∞
a(x′)b(x − x′)dx′ (3.6)

The excitation function resulting from a varying ion concentration at different target depths can

be described by dividing the target into many thin depth slices. Using this approximation, the yield

from a nuclear reaction is obtained from a sum over the contributions of each layer, i, of the target

[Mau82]:

Y (E0) ≈
∑

i

NiFi(E0) (3.7)

Here, E0 is the mean beam energy; Ni is the target atom concentration in each layer (in units of nuclei

per cm2); and Fi(E0) is the convolution function of the cross section, σ(E), beam energy profile, and

energy straggling in the target [Mau82]:

Fi(E0) =

∫ E0

E′=0
gi(E0 − E′) dE

′

∫ ∞

E=−∞
σ(E)h(E′ − E) dE (3.8)

The beam spread function, h(E′ − E)dE, is expected to be Gaussian in shape, and describes the

probability of a beam particle having an energy between E and dE at a depth corresponding to an

energy of E′. The integral over negative energy E becomes truncated at E = 0 because the cross

section at these energies is zero. The straggling function, gi(E0 − E′)dE′ (defined at each layer,

i), describes the probability of a beam particle having an energy between E′ and dE′ at a depth of

xi. Straggling effects can be computationally intensive to calculate [Pez08, Mau82]. However, beam
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particles typically undergo many collisions with electrons, losing typically several keV of energy in

the thick targets used in nuclear astrophysics experiments. In these cases, the central limit theorem of

statistics states that energy straggling can be approximated by a Gaussian function [Pez08]. Thus:

h(E′ − E) =
1√

2πσb
exp

[

−
(E′ − E)2

2σ2
b

]

(3.9)

gi(E0 − E′) =
1√

2πxiσs
exp

[

−
(E0 − E′ − ∆i)2

2σ2
sxi

]

(3.10)

The adjustable parameters σb and σs define the beam energy width and straggling rate, respectively.

The average energy loss of the beam particles at depth xi is denoted by ∆i, and is given by the integral

(sum) of the total linear stopping power, dE/dx, up to that location:

∆i =
i
∑

j=1

(xj − xj−1)
dE

dxj
(3.11)

Previous work frequently assumed a constant total linear stopping power [Mau82]. This is only valid

if (i) the beam does not lose too much energy in the target so that the stopping power for pure layers

is nearly energy-independent, and (ii) the ion concentrations do not vary significantly over the depth

of the target. For example, if a given species is implanted in high doses resulting in a strongly varying

depth concentration, then the second assumption is not valid, and the total stopping power of the

material cannot be assumed to be constant, even if the energy lost in the target is relatively small.

For a sample produced by implanting species p into a substrate of species q, the energy lost per

unit path-length is given by:

dE

dx
= NqSq + NpSp = NA

[

ρq

Mq
Sq +

ρp

Mp
Sp

]

(3.12)

N is the number of atoms per cm3; S is the stopping cross section (eV·cm2/atom); NA is Avogadro’s

number; M is the atomic mass in amu; and the mass density (in g/cm3) of atoms is denoted by ρ.

In general, the stopping cross sections depend on energy. In order to determine the densities ρ, the

nature of the implanted region must be known. Here, the implanted atoms are assumed to be located
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in inter-lattice spacings, resulting in an overall material density increase:

ρq(xi) =ρq = const (3.13)

ρp(xi) =ξ(xi)
ρqMp

Mq
(3.14)

where ξ(xi) is the stoichiometry (i.e., the number ratio of implanted to substrate atoms, Np/Nq) at

depth xi; ρq is the mean density of the pure substrate material (without species p).

Depth profiling is usually performed with narrow nuclear resonances, whose peaked shapes pro-

vide sufficient depth resolution. As will be seen later, in the present work the measured resonances

have total widths on the order of tens of eV. Narrow resonance cross sections, for which the partial

widths can be assumed to be energy-independent over the total resonance width, can be described by

the Breit-Wigner formula described in Sec. 2.1:

σ(E) =
λ2

4π
ω

ΓaΓb

(E − Er)
2 + Γ2/4

(3.15)

=
λ2

4π
ωγΓ

1

(E − Er)
2 + Γ2/4

, (3.16)

with

ω =
(2j + 1)

(2jp + 1)(2jt + 1)
(3.17)

where Γa, Γb, and Γ are the entrance particle partial width, exit photon partial width, and the total

width, respectively; Er is the resonance energy; j, jp and jt are the spin of the resonance, projectile

and target nucleus, respectively; and ωγ is the resonance strength:

ωγ = ω
ΓaΓb

Γ
(3.18)

If the resonance used for depth profiling is sufficiently narrow with respect to the beam energy spread

(i.e., Γ 0 σb), the convolution of cross section and beam spread functions in Eq. (3.8) can be simpli-
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fied:

∫ ∞

E=−∞
dE σ(E)h(E′ − E)

=
λ2

4π
ωγΓ

∫ ∞

E=−∞
dE

h(E′ − E)

(E − Er)2 + Γ2/4

=
λ2

2
ωγh(E′ − Er) (3.19)

For the assumption of a narrow resonance, the yield in Eqs. (3.7) and (3.8) can then be written as:

Y (E0) =
λ2

2
ωγ
∑

i

Ni
1

2πσbσs
√

xi

∫ E0

E′=0
dE

′

exp

[

−
(E′ − Er)2

2σ2
b

]

exp

[

−
(E0 − E′ − ∆i)2

2σ2
sxi

]

(3.20)

This general equation for the yield curve arising from a target stoichiometry that varies as a function

of depth can be used to analyse experimentally measured yield curves. This formalism is useful for

extracting stoichiometry profiles of the implanted targets used in nuclear astrophysics experiments.

More importantly, it allows for extracting absolute resonance strengths.

An example of using a simultaneous fit to both stoichiometry and resonance strength is given

in Ch. 6. The formalism outlined above will be used to extract the Elab
r = 479 keV strength in

22Ne(p, n)23Na by implanting 22Ne into an aluminium and measuring the 27Al+p yield curve.

If the implanted region of the target has a uniform depth profile, this treatment of excitation func-

tions is changed somewhat. The general yield in Eq. (3.3) becomes

Y (E0) =

∫ E0

E0−∆E
dE′

∫ ∞

Ei=0
dEi

∫ Ei

E=0

[

σ(E)

ε(E)
f(E0 − Ei)g(Ei − E, E′

)dE
]

(3.21)

where ∆E is now the target thickness in units of energy. A beam particle will lose an average energy

of ∆E as it traverses the implantation region of the target. By assuming an isolated narrow resonance

(Breit-Wigner cross section) for σ, two useful quantities can be found from Eq. (3.21): (i) the maxi-

mum yield height, and (ii) the yield integral. The maximum yield height for a thick target (∆E → ∞)

is

Ymax =
1

εr

λ2
r

2
ωγ (3.22)
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where εr is the effective stopping power in the target region (i.e., the total stopping power per target

nucleus); λr is the deBroglie wavelength; and ωγ is the strength of the resonance. This equation is

useful in determining a resonance strength if a target is sufficiently thick (usually ∆E > 15 keV) and

its stoichiometry is well known. If a target is not thick enough, Eq. (3.21) can be integrated to provide

the expression

AY =
∆E

εr

λ2
r

2
ωγ (3.23)

A more detailed discussion of yield curves can be found in Ref. [Ili07].
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4 Experimental Methods

4.1 Laboratory Equipment

EXPERIMENTS were performed at the Laboratory for Experimental Nuclear Astrophysics (LENA)

at the Triangle Universities Nuclear Laboratory. A floor plan of the laboratory is shown in

Fig. 4.1. LENA is dedicated to the measurement of low energy cross sections relevant in nuclear

astrophysics.

The accelerator used in the present studies was a 1 MV Van de Graaff “JN” accelerator which is

capable of accelerating protons and α-particles to energies of approximately E = 150 to 800 keV

(assuming singly ionised atoms). The analysing magnet slit control system described in Sec. 4.3

constrains the beam energy, resulting in an energy uncertainty on the order of σE = 0.5 keV. The

beam is focused onto a target thick enough to stop all incident particles. The targets usually consist

of thin tantalum sheets with the reaction nuclei of interest implanted into them. Beam currents on

target of up to I = 150 µA (approximately 1014 particles/s) are achievable with the JN accelerator

(the other accelerator, an electron cyclotron resonance ion source, is capable of delivering beams of

up to several mA to the target). The beam current is measured directly from the target chamber,

which is electronically isolated. Secondary electron suppression allows for accurate beam current

measurement. A liquid-nitrogen cooled copper cold trap serves to reduce contaminant buildup on the

surface of the target, and de-ionised water is used for target cooling. The target chamber is shown in

Fig. 4.2.

The main LENA detectors consist of a 135% high purity germanium (HPGe) detector and a

NaI(Tl) scintillator annulus surrounding the target chamber. The HPGe detector is placed as close

to the target as possible (1.1 cm from target to detector face) in order to cover the maximum possible
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Figure 4.1: The Laboratory for Experimental Nuclear Astrophysics (LENA). Charged particles (usually protons
or α-particles) are accelerated in one of the two accelerators, consisting of a 1 MV JN Van de Graaff and a 200
kV Electron Cyclotron Resonance (ECR) source. An analysing magnet is used to select the desired beam energy
and particle species, which are focused onto the target situated at the far right of the figure.
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−300 V

Figure 4.2: Schematic representation of the target chamber used in the experiment. A copper cold trap serves to
reduce contaminant buildup on the surface of the target, and secondary electron suppression allows for accurate
beam current measurement. Beam current is measured directly from the target chamber, which is electronically
isolated. De-ionised water is used for target cooling.
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Figure 4.3: The HPGe detector, detailing the geometry of the detector crystal.

solid angle, thus maximising the detection efficiency. A scale image of the HPGe detector is shown in

Fig. 4.3. A NaI(Tl) annulus surrounds the HPGe detector and covers a large solid angle to maximise

coincidence efficiencies. It consists of 16 optically isolated NaI(Tl) segments, each with their own

photomultiplier tube, arranged in an annulus of 35.7 cm outer diameter, 11.8 cm inner diameter, and

33.0 cm length. The target is located at the geometric centre of the annulus. The detectors are en-

closed in a lead shield, which, in turn is surrounded by a five-sided anti-coincidence plastic scintillator

shield. This setup is shown in Fig. 4.4.

The passive lead shield consists of a box of 25 mm thick lead, supported by 64 mm thick alu-

minium. A compromise is made between passive shield thickness and weight considerations. It

should be noted that the NaI(Tl) annulus also provides some amount of passive shielding to the HPGe

detector. The plastic scintillator muon shield, which reduces background counts originating from cos-

mic rays, consists of a five-sided shield of Bicron BC-408 plastic scintillator plates with optical fibre

readouts. This readout method is used because the size and arrangement of the scintillators doesn’t

allow for practical use of light guides. The optical fibres used are Bicron BCF 91A multiclad wave-

length shifting (WLS) fibres. This not only makes the apparatus much sturdier, but the attenuation

coefficient in the WLS fibres is lower than for waveguides, giving better light yield. See Ref. [Lon06]

for more details on the muon shield at LENA.

38



Figure 4.4: Experimental setup of detectors consisting of a 93 mm long by 90 mm diameter HPGe crystal,
centred inside a NaI(Tl) annulus of inside and outside diameters of 118 mm and 357 mm, respectively. These
are surrounded by a lead box, which is surrounded by 50 mm thick scintillator plates. Dimensions in the figure
are given in mm.
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4.2 HPGe Detectors

High Purity Germanium (HPGe) detectors are commonly used in nuclear physics experiments for

the measurement of γ-rays. Although they typically have lower intrinsic efficiencies and costs more

than scintillation detectors, the vast improvement in energy resolution over other detectors is essential

when high precision data are needed .

In this section, the characterisation of a HPGe detector is described in detail. Absolute efficiency

determination is described in Sec. 4.2.1. Determination of angular correlation coefficients for detector

solid angle corrections is outlined in Sec. 4.2.2. Detector energy calibration is performed in Sec. 4.2.3,

and the summing correction formalism, which must be considered carefully in large solid angle (high

detection efficiency) situations, is provided in Sec. 4.2.4.

4.2.1 HPGe Detector Efficiencies

When analysing data to calculate cross sections of reactions, it is important to know the full

energy peak efficiency of the detector in order to relate the number of detected photons to the number

emitted in the reaction. The total efficiency of the detector is also important because it enters directly

into calculations concerning the “summing out” of peaks (see below). This summing out correction

affects the peak count rate considerably if the detector is placed in close geometry to a target (see Sec.

4.2.1 for more details on coincidence summing effects). It is possible to measure the peak and total

efficiencies of a detector by using single line radioactive sources, but these measurements always rely

on the activity of the source, which cannot always be known with certainty. The sum-peak method

provides a technique for determining absolute efficiencies at a single energy. This efficiency data point

can then be used to normalise efficiencies measured with other radioactive sources and reaction data.

The Sum-Peak Method for Determining Detector Efficiencies

The following method for calculating detector efficiencies from a two step cascade is named the

sum-peak method [Kim03]. If a detector is placed in close geometry with a decaying nucleus, coin-

cident summing can occur [Kno89]. This effect results when multiple γ-rays from the same decay

are detected within the detector’s resolving time. The result of this is a count, which is registered at
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the energy sum of the individual γ-rays. If each of the γ-rays are fully detected, the registered count

arrives in a peak known as the “sum-peak”. This phenomenon is shown in Fig. 4.5.

The process of coincidence summing can be used to find analytical expressions for the full energy

peak efficiencies arising from a simple two step decay. An example of a two step cascade is the decay

of 60Co to 60Fe, which is nearly ideal for the sum-peak method. The nuclide 60Co decays by emitting

two γ-rays with equal intensity at Eγ = 1173 and 1332 keV (note that the ground state branching

ratio is very small, 2 · 10−8 [Bow74]). This decay provides a simple relationship between the counts

in the full energy peaks and the detector efficiencies. The number of counts in the two full energy

peaks, Nγ1 and Nγ2, in the sum peak, Nγ3, and the total number of counts, Nt in the spectrum, are:

Nγ1 = N0ε
p
γ1

[

1 − Wtp(θ)ε
t
γ2

]

(4.1)

Nγ2 = N0ε
p
γ2

[

1 − Wpt(θ)ε
t
γ1

]

(4.2)

Nγ3 = N0ε
p
γ1ε

p
γ2Wpp(θ) (4.3)

Nt = N0
[

εt
γ1 + εt

γ2 − εt
γ1ε

t
γ2Wtt(θ)

]

(4.4)

where N0 is the total number of decays; εt
γ is the total efficiency (the probability that the γ-ray deposits

any energy in the detector); εp
γ is the peak efficiency (the probability that the γ-ray is fully detected);

and Wpt(θ) is the solid angle corrected angular correlation coefficient calculated using the peak Q-

coefficient for γ-ray 1, and the total Q-coefficient for γ-ray 2; Wij (where i and j can be p for peak

efficiency or t for total efficiency) is calculated by:

Wij(0
◦) = 1 +

5

49
Q(1)i

2 Q(2)j
2 +

4

441
Q(1)i

4 Q(2)j
4 (4.5)

The Q-coefficients are calculated from the geometry of the detectors. Here, Q(1) is the Q-coefficient

for γ-ray 1 and Q(2) is the Q-coefficient for γ-ray 2. See Sec. 4.2.2 for more details on the calcula-

tion of Q-coefficients. The fractions in W are obtained from the direction-direction correlation for a

cascade decay (4+ → 2+ → 0+). The reader is referred to Ref. [Kim03] for more details. Simula-

tions show that the angular correlation coefficient, Wij(0◦) is approximately equal for peak and total

efficiencies, so Wij(0◦) ≈ W (0◦).
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Figure 4.5: Schematic showing the concept of coincidence summing in a detector. Three possibilities are: (i)
The first γ-ray (γ1) is fully detected, while the second (γ2) does not enter the detector, resulting in a count at
the energy of γ1 (E2 − E1). (ii) γ1 is fully detected, and γ2 also enters the detector, leaving a portion of its
energy. This situation results in a count being removed from the peak at E2 −E1, and added into the Compton
continuum at E2 − E1 + δ2 (δ2 is the amount of energy that γ2 deposited). (iii) Both γ-rays are fully detected
by the counter. In this case, a count will be registered at the sum of their energies, E2.
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The peak and total efficiency can be found by solving Eqs. (4.1) - (4.4) and assuming that the total

efficiencies are approximately equal at Eγ = 1173 and 1332 keV (i.e., εt
γ1 ≈ εt

γ2 for 60Co). This

assumption has been shown to be correct to within 3% with Monte Carlo simulations. The efficiencies

are:

εp
γ1 =

1

W (θ)

√

Nγ1N2
γ3

NtNγ2Nγ3 + Nγ1N2
γ2

(4.6)

εT
γ1 =

1

W (θ)
−

1

W (θ)

√

Nγ1Nγ2

NtNγ3 + Nγ1Nγ2
(4.7)

To calculate the total number of counts in the spectrum, Nt, the room background contribution

first needs to be subtracted. Once this has been performed, the spectrum needs to be extrapolated

to zero energy, below the low-energy discriminator threshold. This is done by extrapolations from

higher energies assuming that the Compton edge is relatively flat in this region. Although this is only

an approximation, the fraction of counts in this region compared to the total number of counts in the

spectrum is very small.

An additional correction must be made to the measured efficiencies to account for source geom-

etry. When a source is placed on the face of the target backing (usually consisting of 1/2 mm thick

tantalum), the source is further from the detector than a beam induced reaction occurring within the

first few µm of the target face. This is shown schematically in Fig. 4.6. Reactions resulting from a

beam hitting the target will also have a larger diameter, on the order of 1 cm. To correct for this ge-

ometrical effect, Monte Carlo simulations are performed for both situations to obtain a scaling factor

between the two. This factor is then applied to the 60Co sum-peak efficiencies.

In order to obtain good precision in the efficiencies using these methods, very good sum peak

statistics need to be obtained. For example, in order to obtain uncertainties of less than 5% in the

efficiency, sum peak statistics need to be known to less than 1%.

Peak Efficiencies at a Range of Energies for HPGe

Although the sum peak method is useful for finding peak efficiencies from two-line sources, other

methods must be used to find efficiencies at a range of energies. Radioactive sources, such as 56Co,

emit a large range of high intensity γ-rays of energies between 263 keV and 3612 keV [Bow74]. These
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Beam

Blank Backing

Figure 4.6: Geometry of (i) a 60Co source on the face of a target backing and (ii) accelerated beam hitting an
implanted target. In order to correct measured efficiencies to account for this difference in geometry, Monte-
Carlo simulations of both situations are performed to obtain a scaling factor. The dimensions in this figure are
not to scale.

radioactive sources are suitable for finding efficiencies at a range of energies without having to use

multiple sources. However, coincidence summing becomes a concern and needs to be addressed. The

summing correction codes described in Sec. 4.2.4 can be used to find peak efficiencies from measured

intensities.

A summing correction computer code, sump, has been written in order to correct peak efficiencies

for complicated decay schemes. The code is described in more detail in Sec. 4.2.4. For the electron

capture decay of 56Co to 56Fe, there are 13 energy levels that need to be taken into account. A further

complications arises because of an 18.1% β+-decay creating 511 keV γ-rays. However, it is possible

to add extra artificial levels in the decay scheme to produce 511 keV γ-rays for coincidence summing.

These levels are populated with the feeding fraction known for the level (for example, the Ex = 2481

keV level has an 18.1% feeding fraction). The artificial levels decay with a branching ratio of 1.0 to the

level they correspond to. For example, a artificial state at Ex = 2992 keV will decay (with Eγ = 511

keV) to the Ex = 2481 keV level 100% of the time. This has the result of 511 keV γ-rays being

emitted in coincidence with decays from that level. Only γ-rays with good statistical uncertainties

from an overnight acquisition should be used in the peak efficiency calculation, while the 1360 keV

line is omitted because of strong contamination from summing of the 846 keV and 511 keV lines.
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The summing correction code was also used with the Elab
r = 278 keV resonance in 14N(p,γ)15O,

which illustrates the effect of coincidence summing. This has the most influence on the ground state

transition (summing-in), as shown in the peak efficiencies of Fig. 4.7 at Eγ ≈ 7.6 MeV. Lower energy

transitions also undergo more summing out because peak efficiencies for these γ-rays are higher.
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Figure 4.7: Peak efficiencies calculated from a measurement of the 278 keV resonance in 14N(p,γ)15O. This is
a good example of the large effect of coincidence summing, where summing-in increases the perceived count
rate in the ground state transition dramatically. The full and open symbols correspond to uncorrected, and
corrected efficiencies, respectively.

There is a large dependence of the peak efficiencies on the disintegration rate supplied to the

code. Energies that experience summing-in are affected more than those with summing-out effects.

Therefore deviations in the disintegration rate create large fluctuations in the data points. Hence,

the disintegration rate must be known to high accuracy. The same procedure used to calculate peak

efficiencies from 14N(p,γ)15O was used with the Elab
r = 326 keV resonance in 27Al(p,γ)28Si.

In order to normalise the peak efficiency curves to the absolute Sum-Peak efficiency from 60Co, a

bootstrapping method was applied. Initially, the peak efficiencies for 56Co were fit with an analytical

expression [Tra99]

ln [εp(E)] = a + b ln(E) + c(ln(E))2 (4.8)

The fit is used to find the efficiencies at Eγ = 1173 and 1332 keV, which are used to normalise 56Co

efficiencies to the absolute 60Co measurements. This procedure is then repeated with the 14N(p,γ)15O
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data points, followed by 27Al(p,γ)27Si. This procedure yields reliable absolute peak efficiencies be-

tween a few hundred keV and about 10 MeV.

The peak efficiency curve obtained from the procedure described is shown in Fig. 4.8. There is

some scatter in the efficiency data points, which is partially caused by the approximations used for

treating 511 keV γ-rays from 56Co decay. Contaminants such as 57Co, which has a substantially

longer half life than 56Co, could also be contributing to this scatter through random summing ef-

fects. Random summing from the strongest lines can also contribute to this scatter if dead-time in the

electronics is appreciable.

Monte Carlo simulations using Geant4 are useful for finding efficiencies at energies between

experimental data points, and for extrapolating to higher or lower energies. In order to produce an

accurate Monte Carlo efficiency curve, minor adjustments are typically made to the detector geom-

etry [Hel03, Lon06] to correct for small manufacturing uncertainties in the crystal position. In the

present study, however, the detector dimensions are known through a Computed Tomography (CT)

scan of the detector [Car10]. Following that procedure, the relative peak efficiency was found to be

accurate to within a few percent when extrapolating between Eγ = 4 and 11 MeV. The Monte Carlo

efficiency curve is represented by a solid line in Fig. 4.8. The geometry used in the Geant4 efficiency

calculations is shown in Figs. 4.9-4.10.

Total Efficiency Calculations for HPGe

Total efficiencies are important for the summing correction of spectra (see Sec. 4.2.4). Although

Compton scattered γ-rays do not contribute to the full energy peak, they can give ride to the summing-

out of other full energy peaks, thus lowering the number of counts observed. For this reason, it is

important to know the total efficiency of the HPGe detector.

It is possible to calculate the total efficiency of the detector using the linear attenuation coefficients

for germanium and integrating over the volume of the detector (see Figure 4.11). This has been

performed for a cylindrical NaI(Tl) detector [Bol80], but it is a simple matter to improve the method

to account for the contact pin hole in the HPGe crystal. This correction amounts to only 2% for the
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Figure 4.8: Peak efficiency curve for the LENA HPGe detector. For 56Co, some scattered data points can
be observed. This is probably caused by random summing with impurities in the source, as well as summing
with 511 keV annihilation radiation. Statistical error bars in the Geant4 calculations are smaller than the
data points. Error bars in measured efficiencies arise from both statistical counting uncertainties and from the
summing correction procedure, which includes branching ratio uncertainties.
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Figure 4.9: Geant4 geometry used for the efficiency simulations of the HPGe detector at LENA. Shown is
the entire geometry used. Green material represents detectors: HPGe and NaI(Tl). White represents structural
material (detector housing, aluminium supports etc.); red signifies lead; and black material shows the plastic
scintillator muon shield.
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Figure 4.10: Geant4 geometry used for the efficiency simulations of the HPGe detector at LENA. Shown in
this figure is a close up of the target chamber assembly. This geometry is crucial in the determination for both
peak and total efficiencies.
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Figure 4.11: Determination of the Total Efficiency. Two separate integrals are required for the path lengths.
One for the γ-rays passing through the back face of the detector, and one for the γ-rays passing through the
sides.

LENA HPGe crystal. The equation for the total efficiency is:

εT
γ = εc − α (4.9)

where

εc =
1

2

[
∫ θ1

0

(

1 − exp

(

−µt

cos(θ)

))

sin(θ)dθ

]

+
1

2

[
∫ θ2

θ1

(

1 − exp

(

−µR

sin(θ)
+

µd

cos(θ)

))

sin(θ)dθ

]

(4.10)

α =
1

2

[
∫ θ3

0

(

1 − exp

(

−µl

cos(θ)

))

sin(θ)dθ

]

+
1

2

[
∫ θ4

θ3

(

1 − exp

(

−µr

sin(θ)
−

µ(t − l − d)

cos(θ)

))

sin(θ)dθ

]

(4.11)

and µ is the linear attenuation coefficient for germanium, t is the thickness of the detector, R is the

radius of the detector, and d is the distance of the source from the detector. In the contact pin hole

correction term α, l is the length of the contact pin hole and r is its radius. Furthermore,

θ1 = arctan

(

R

d + t

)

θ2 = arctan

(

R

d

)

(4.12)

This integral needs to be evaluated numerically and yields a good estimation for the total efficiency of

the detector. The geometry for the angles used in this calculation is shown in Fig. 4.11.

This method is generalised to all energies by fitting a curve to attenuation coefficient data [Boo96].

This way, an expression for the linear attenuation coefficient µ as a function of energy can be obtained.
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Figure 4.12: Curve fitted to attenuation coefficients for germanium

A 14 order polynomial fit to data acquired from Boone et al. [Boo96] is accurate between 15 keV and

15 MeV to within 3% (See Fig. 4.12). This fit is used with Eqs. (4.9)-(4.11) by replacing the coefficient

µ with the energy-dependent fit. This method can also be adapted for NaI(Tl) detectors using the same

fitting function.

As a test of these calculations, Geant4 calculations can be performed in the same way as for

the full energy peak efficiencies by only taking the HPGe crystal into account and removing all sur-

rounding material. The results of this comparison are shown in Fig. 4.13. The agreement between

calculations and simulations is remarkable. However, the efficiencies calculated with Eqs. (4.9)-(4.11)

are consistently low owing to the fact that this method assumes that γ-rays travel in straight lines

through the crystal with no scattering. Once the full detector geometry had been included (detector

housing, target chamber etc.), the calculations outlined above are no longer adequate because they

do not include scattering and absorption of photons in the surrounding material. This is an important

effect, especially at high photon energies, where the photons can scatter into the HPGe detector from

the surrounding material, thus increasing the total efficiency. The preferred method of obtaining total

efficiencies is therefore to normalise the Monte Carlo total efficiencies to the experimental 60Co sum-

peak efficiency. After correction for dead-time in the electronics, the results yield the total efficiency

curve seen in Fig. 4.14. The figure includes two sets of Geant4 simulations, one with the full detec-
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Figure 4.13: Total efficiency vs. energy for our Germanium detector. The integration method yields a curve
that is very close to the GEANT4 simulations. The GEANT4 simulation is for the HPGe crystal only, i.e., it
disregards surrounding material.

tor geometry, including the NaI(Tl) annulus and target chamber, the other of the HPGe crystal only.

The effect of surrounding material on the total detection efficiencies is especially important at high

and low energies. At high energies, for example, simulations including the full geometry are found to

have a 50% higher efficiency than simulations of the crystal only. Both data sets have been adjusted

to the experimental efficiency found from 60Co.

4.2.2 Q-Coefficients for HPGe Detector

Angular correlation attenuation coefficients (Q-coefficients) are needed for the sum-peak method

of efficiency calculations. They are used to correct theoretical angular correlation coefficients for solid

angle detector effects. They are also important, therefore, for analysing measured angular correlations.
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Figure 4.14: Geant4 total efficiency curve for a HPGe detector adjusted to experimental data. Two simula-
tions are included, one for the full detector geometry, and another for the crystal only.
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Angular correlation coefficients are calculated from [Bol80, Kim03],

Qk = Jk/J0 (4.13)

Jk =

∫ θmax

0
sin(θ)Pk(cos θ)εi(θ)dθ (4.14)

where θ is the incident angle of the γ-ray with respect to the detector axis, θmax is the maximum

angle subtended by the detector from the source (see Fig. 4.11); Pk(cos θ) is a kth order Legendre

polynomial; and εi(θ) is the efficiency of the detector for a highly collimated source at an angle θ. In

sum-peak efficiency calculations, the Q-coefficients for both the peak and total efficiencies must be

known in principle. For the total efficiency Q-coefficients, approximate numerical calculations such

as those in Sec. 4.2.1 can be used. Q-coefficients are obtained with a code derived from Ref. [Kim03],

where the coefficients are calculated from the geometry of the detector and the linear attenuation

coefficient, µ, of germanium at that energy. The Q-coefficients for k = 1, 2, 3, 4 for a range of

energies are shown in Fig. 4.15. However, for precision work, Monte Carlo methods should be used

for the reasons outlined in Sec. 4.2.1.

In order to calculate the peak and total efficiency Q-coefficients using Monte Carlo simulations,

several methods are availiable. One method is to find the efficiency of the detector as a function of

incident angle using Geant4 to simulate a collimated source at a range of energies. These efficiencies

can then be used with Eq. (4.14) to calculate the Q-coefficients of the detector. This method, applied

to peak effeiciency Q-coefficients, agrees with those quoted by Ref. [Yat63] to within 1%. Peak

efficiency Q-coefficients have been calculated in the geometry shown in Fig. 4.11 for a range of

energies. The results are presented in Fig. 4.16.

An alternative method for obtaining peak and total efficiency Q-coefficients is to use a post-

processing analysis technique alongside a Geant4 simulation. The simulation is used to produce

a file with tracking information on every event that occurs in the detector. A post processing code

written in root can analyse the file to calculate the Q-coefficients. Each time a full energy peak

event (for peak Q-coefficients) is registered in the code, the initial angle of the γ-ray is recorded. The

54



0 2000 4000 6000 8000 10000
Energy (keV)

-0.2

0

0.2

0.4

0.6

0.8

Q
-C

oe
ffi

ci
en

t

Total Efficiency Q1
Total Efficiency Q2
Total Efficiency Q3
Total Efficiency Q4

Figure 4.15: Total efficiency Q-coefficients for 135% Ge detector at a detector-source distance of 1.65 cm. The
total efficiency coefficients were calculated numerically using linear attenuation coefficients.
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Figure 4.16: Peak efficiency Q-coefficients for 135% Ge detector at a detector-source distance of 1.65 cm. The
peak efficiencies were calculated using Geant4.
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Q-coefficient is calculated through,

Qk =
1

N

N
∑

j=0

Pk (cos θj) (4.15)

where N is the total number of full energy peak events; Pk is the kth order Legendre polynomial;

and θj is the initial angle of each fully detected γ-ray (i.e., the angle at which it was emitted from

the source). This equation is equivalent to Eq. (4.13), and is also applicable to total efficiency Q-

coefficients. The advantage of using this method is that it accounts for other material surrounding the

detector without assuming spherical symmetry in the system.

4.2.3 Detector Energy Calibration

The HPGe pulse height spectrum is calibrated with radioactive sources and room background

lines. The room background lines used are the 40K and 208Tl decay lines at Eγ = 1460.822(6)

keV [Cam04] and Eγ = 2614.529(10) keV [Mar07], respectively. A 56Co source provides energy

calibration peaks at energies between Eγ = 200 and 3600 keV [Jun99] while a 137Cs source provides

an extra energy calibration point at Eγ = 661.657(3) keV [Bro07]. The amplifier and ADC are

known to be linear, so extrapolation of an energy calibration from these energies to those required in

an experiment (usually on the order of about Eγ = 10 MeV) is justifiable. Additionally, the excitation

energies of states in nuclei of interest in nuclear astrophysics are usually well known. If the energy of

a state is required to better accuracy, extra energy calibration points close to the energy of interest are

encouraged.

The energy calibration was performed by a least squares linear fit to the data. The calibration

obtained is

Eγ = aC + b (4.16)

where C is the channel number in the pulse height spectrum.
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4.2.4 Summing Correction

Introduction

Numerical methods for treating coincidence summing were first developed in Refs. [McC75,

Geh77, Deb79]. These methods were then generalised into matrix form in Ref. [Sem90], which is

useful for integration into a code for simple and fast summing correction. For more details of this

method, see Ref. [Sem90]. The following summing correction formalism can be used to correct mea-

sured spectra, for branching ratio determination, and for full-energy peak efficiency determination.

Three codes: sum, sumb, and sump were written to perform these tasks.

Formalism

Consider a simple generalised decay scheme (Fig. 4.17) with n excited energy levels. In this ex-

ample, a four level decay scheme (n = 4) for a radioactive source decay is considered. In radioactive

decay the product is an excited nucleus, which can have a different energy. This distribution of initial

excitated states is represented by the feeding fractions, fn. The γ-ray branching ratios of each decay

from level j to level i are denoted by xji.

In order to analyse the decay scheme in the presence of coincidence summing, these feeding

fractions and branching ratios need to be converted into matrix form. The feeding fractions can be

represented in the form of a row vector, f:

f = (f0 f1 . . . fn) , (4.17)

The branching ratios are represented by an (n + 1) × (n + 1) matrix, x. The rows represent j, the

starting level, and the columns represent i, the ending level. Following this convention, matrix element
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Figure 4.17: A simple decay scheme representing the possible decay routes of an excited nucleus. The feeding
fractions, fn, describe the population probability of each excited state, and xji are the branching ratios for the
decay of state j to state i.

xji represents the γ-ray branching ratio from level j to level i:

x =






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









(4.18)

Now, three other matrices, a, e and b, which are functions of x, can be defined:

aji = xji · εp
ji (4.19)

eji = xji · εT
ji (4.20)

bji = xji − eji (4.21)

where, εp
ji is the peak efficiency of the detector for measuring the γ-ray decay from level j to level i,
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and εT
ji is the total efficiency. Using these matrices, two more can be defined:

A =
n
∑

k=1

ak (4.22)

B = E +
n
∑

k=1

bk (4.23)

Where E is the unit matrix. Two more matrices can now be defined:

N = diag ([f · B]i) (4.24)

M = diag (Bi0) (4.25)

The “diag” in Eq. (4.24) means that the row matrix obtained from the f · B calculation is converted

into the diagonal elements of an (n + 1) × (n + 1) square matrix. Similarly, Eq. (4.25) converts the

first column of the B matrix into an n+1 square matrix.

These matrices can now be combined to find the measured peak intensities of each γ-ray, S.

S = RNAM (4.26)

where R is the disintegration rate (i.e., the total number of decaying nuclei). The matrix A contains

information about the observed peak intensities including summing-in effects; N provides the feeding

to a level both from the feeding fractions and from decays from higher lying states. Matrix M provides

information about the γ-ray decay originating from each level. Together, N and M act on matrix A to

provide the summing-out effects. This is all scaled by R to provide the observed intensities of each

γ-ray.

The matrix S is not particularly useful in itself because it contains the observed peak intensities

in the presence of coincidence summing. These values are the intensities that would be observed in

an experimental spectrum. In order to correct for coincidence summing, Eq. (4.26) must be expanded

into different orders of correction. For example, S(0) is the matrix S with no summing correction and
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S(1) is S with summing corrections for only 2 coincident peaks. Using this expansion,

A(0) = a (4.27)

B(0) = E +
n
∑

k=1

xk (4.28)

N(0) = diag
([

f · B(0)
]

i

)

(4.29)

M(0) = E (4.30)

Eq. (4.26) can now be written as,

S = R
(

N(0)A(0) + D
)

, (4.31)

Where,

D = N(0)A(0)
(

M − M(0)
)

+ N(0)
(

A − A(0)
)

M +
(

N − N(0)
)

AM (4.32)

D is known as the correction matrix and contains all of the coincidence summing information. From

this information several coincidence summing corrected quantities can be obtained. The sum corrected

peak intensities, I, can be found using the branching ratio information (xji), the feeding fractions (fj),

the efficiencies of the detector (εp
ji and εT

ji) and the disintegration rate, R.

Iji = R
[

N(0)c
]

ji
(4.33)

The disintegration rate can be found using the observed peak intensities in the presence of co-

incidence summing (Sji), the efficiencies, the feeding fractions and the branching ratios. Using Eq.

(4.31),

Sji = Rji

[

N(0)A(0) + D
]

ji
(4.34)

A matrix of disintegration rates is obtained from this calculation, which vary because of statistical

errors in the observed peak intensities. A value for R is obtained by averaging these values. The

median of the rates is used for this purpose, because it is less affected by outliers in the rates.

If the observed peak intensities, branching ratios, feeding fractions, disintegration rate and total
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efficiency of the detector are known, it is possible to calculate the sum corrected peak efficiency.

Calculating the peak efficiency in this way is extremely useful because a single radioactive source

with a range of γ-ray energies can be used to produce an efficiency curve. Eqs. (4.33) and (4.34)

yield:

εp
ji =

Sji

Iji
−

Dji
[

N(0)c
]

ji

, (4.35)

where Iji is calculated from Eq. (4.33). Unfortunately, the peak efficiencies are also contained in the

correction matrix, D, so iterative methods are required. Initially, D is assumed to be zero so Eq. (4.35)

becomes:

εp
ji =

Sji

Iji
(4.36)

These values for the peak efficiency can then be used to calculate a new value for D from Eqs. (4.19)

to (4.32) , which in turn can be used with Eq. (4.35) to recalculate the peak efficiencies. Desired

accuracy of peak efficiencies can be obtained by repeating this procedure iteratively.

A similar method has been developed to calculate unknown branching ratios using the peak and

total efficiencies, feeding fractions, observed values and disintegration rate. This method uses a form

of Eq. (4.31):

A(0)
ji =

Sji/R − Dji

N (0)
jj

(4.37)

where,

xji =
A(0)

ji

εp
ji

(4.38)

Once again, this method involves an iterative search where D is first assumed to be zero. Eq.

(4.37) is used to find the uncorrected branching ratios, xji, which are then utilised to calculate values

for D. These values can then be used to find the branching ratios and the iteration continues until a

desired level of accuracy is achieved.

Summing Correction Codes

Several codes have been written to implement these methods. The first code corrects a spectrum

for coincidence summing, corrects a single peak (useful for yield measurements) or calculates the
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disintegration rate. The second code calculates the sum corrected peak efficiencies from the branching

ratios, feeding fractions, observed peak intensities and a disintegration rate. The third code program

is designed to calculate the branching ratios of a decay if the general structure of the level scheme

is known. This latter code is designed to only be used for resonance reactions with 100% feeding to

the top level. It requires an input of observed peak intensities, efficiencies and a disintegration. The

code also has the feature of being able to hold known branching ratios constant and just calculate the

unknown branches. The programs all use the same input file (See Fig. 4.18).

4
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10003345748

Energy Levels
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4
4
4

2
3
4
4
4
4

3
2
1
0
0
0
0

0
0
0
0
1
2
3

1.0
1.0
1.0
0.017
0.1772
0.5866
0.2192

Observed Values
1 6560.0

18220.0
6415.0
2069.0
12038.0
58367.0
30181.0

0.0
0.0
0.0
0.001
0.0005
0.0005
0.0005

100.0
150.0
123.0
50.0
130.0
300.0
200.0

Number of Energy Levels

Total Number of Reactions

Energy of Levels

Feeding Fractions

Error in Feeding Fractions

Starting Levels

Ending Level

Branching Ratio

Error in Branching Ratio

Number of Observed counts in Peak

Error in Observed Counts

N−Levels

0.0
5183.0
1676.0
6793.0
7556.0

0.0
0.0
0.0
0.0
1.0

0.0
0.0
0.0
0.0
0.0

Figure 4.18: Sample input file for the decay of the 14N(p,γ)15O reaction.

The peak intensity correction program has been tested with a simple, theoretical four level decay

scheme. The summing effects can also be calculated by hand by considering each γ-ray individually

and accounting for every possible decay route that could lead to summing-in, or summing-out. This is

relatively simple for a four level decay scheme and can be calculated with confidence. The results for

calculation by hand were found to be identical to those obtained by running the program. This code

can also be tested using the radioactive decay of 56Co, which has a many level decay scheme and

results in very complicated summing effects. Summing correction for this decay scheme would be
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almost impossible without the aid of a sum correction code. This decay scheme is further complicated

by β+-decay, which can produce 511 keV annihilation radiation. These can sum with any of the decay

γ-rays. The 511 keV annihilation radiation is assumed to originate from the target, and not from the

surrounding material.

In order to account for summing effects involving annihilation radiation, it is possible to create a

decay scheme for 56Co by arbitrarily adding levels 511 keV above each of the levels that are fed by

β+-decay. These artificial levels are fed with the same feeding fraction as for the actual level. For

example the Ex = 2085 keV excited state in 56Fe is populated by β+-decay with a feeding fraction of

18.1%. To account for coincident 511 keV summing effects, a level is added to the decay scheme at

Ex = 2085 + 511 = 2596 keV with a feeding of 0.181. These extra states are then given a branching

ratio of 1.0 to the level they represent (i.e., the Ex = 2596 keV state will decay to the Ex = 2085 keV

state with a branching ratio of 1.0). This has the result of 511 keV γ-rays being emitted in coincidence

with γ-ray decays from that level.

A decay scheme for 56Co can be built in this manner using the branching ratios, feeding fractions,

and energy levels found in Ref. [Jun99]. The calculated peak intensities in the presence of coincidence

summing are then compared to the actual observed peak intensities (Fig. 4.19). Although some of

the points do not agree with the observed values, most of the points agree within error. The points

that disagree are mainly caused by summing with 511 keV γ-rays and impurities in the source (for

example, the 56Co source had a large 57Co contamination).

A more complicated decay scheme was used to test the single peak correction function of the peak

intensity correction program. The 519 keV resonance in 17O(p,γ)18F has a 13 level decay scheme,

which would be extremely hard to correct by hand. The literature 519 keV resonance strength is

ωγ = 1.37 × 10−2 ± 0.22 × 10−2 [New10b]. With no summing correction, the 4975 keV peak

contains 20821 ± 155 counts, which corresponds to a resonance strength of ωγ = 5.3 × 10−2. When

the peak was corrected for coincidence summing effects, the number of counts was 31837 ± 3728,

65% larger than the observed number of counts. This yielded a resonance strength of ωγ = 1.3 ×

10−2±0.2×10−2, in excellent agreement with the literature. The large error in the corrected number

of counts originates from uncertainties in the branching ratios of the decay scheme. This example

highlights the large effect summing can have when using high efficiency detectors.
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Figure 4.19: Ratio of calculated peak intensity to observed intensity in 56Co decay. The peaks at 1360 keV,
1462 keV and 2212 keV appear considerably lower than expected. The 1360 keV peak is largely affected by
511 keV γ-rays.

The peak efficiency summing correction code is further described in Sec. 4.2.1. Hence the infor-

mation will not be repeated in this discussion.

The third code calculates branching ratios of resonant reactions in the presence of coincidence

summing. This program is not intended to be applied to radioactive sources, in which the levels are

populated according to the feeding fractions; 100% feeding to the highest energy level is required, as

in resonance reactions. The Elab
r = 278 keV resonance in 14N(p,γ)15O was used to test this code,

owing to its simple decay scheme [AS91] for which the summing can also be calculated analytically.

The code was developed so that well known branching ratios in the decay can be held constant and

only unknown branches will be calculated. An 14N(p,γ)15O measurement was performed at LENA

for the Elab
r = 278 keV resonance. After running the code with the observed intensities from the

experiment, the branching ratios were compared with the literature values and experimental results.
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Transition Branching Ratio Literature Value
Ei (keV) Ef (keV) Present

5183 0 1.0 ± 0.0 1.0 ± 0.0
6176 0 1.0 ± 0.0 1.0 ± 0.0
6793 0 1.0 ± 0.0 1.0 ± 0.0
7556 0 0.0192 ± 0.0019 0.016 ± 0.001
7556 7583 0.1705 ± 0.0022 0.171 ± 0.002
7556 6176 0.5851 ± 0.0046 0.578 ± 0.003
7556 6793 0.2252 ± 0.0021 0.229 ± 0.003

Table 4.1: Branching Ratios calculated from the 14N(p,γ)15O resonance. The uncertainties in the present
results to not include efficiency uncertainties, which amount to about 5%. The literature values are taken from
Ref. [Imb05].

Slit

Slits
Analysing Magnet

Accelerator

Low Energy
High Energy

Feedback

Figure 4.20: Schematic of the slit control system used to control the beam energy at LENA. If the beam energy
becomes too low, for example, the beam will be deflected more by the magnet (whose field is precisely main-
tained). A current imbalance will be measured between the high and low energy slits causing the accelerator
voltage to be increased.

Every decay branch agreed with the literature values within uncertainties (See Table 4.1).

4.3 Analysing Magnet Energy Calibrations

The beam energy delivered to a target in the LENA laboratory is selected with a horizontal slit

system on the target side of an analysing magnet. The current measured on the slits is balanced with

the aid of a feedback circuit, which controls the terminal voltage. This system is shown schematically

in Fig. 4.20.

Prior to an experiment in which the beam energy must be known, the analysing magnet used to
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Target Elab
r (keV ) Ex (keV) ωγ (eV)

18O 150.9 (2) 5789 9.7 × 10−4
27Al 222.7 (4) 11719 4.2(3) × 10−5
26Mg 292.12 (9) 8552 7.0(12) × 10−3
27Al 292.6 (4) 11867 2.33(13) × 10−4
23Na 308.75 (6) 11989 0.105(19)
27Al 326.6 (4) 11899 1.8(1) × 10−3
27Al 405.5 (3) 11976 8.63(52) × 10−3
26Mg 462.6 (5) 8716 0.035(11)
27Al 654.65 (4) 12216 0.110(9)

Table 4.2: Standard resonances used for analysing magnet calibration. All resonance energies and strengths
are from Ref. [Ili10]

select the beam energy must be calibrated. The procedure for this is well established, and involves

measuring several resonances with well-known resonance energies. Yield curves for each resonance

listed in Tab. 4.2 were measured. A yield curve fitting code (see Sec. 3.2) was used to find the magnetic

field that corresponded to the front edge of each resonance (an example is shown in Fig. 4.21). The

field, B is related to beam energy, E, through [Ili07]

E = aB2 (4.39)

Fitting Eq. (4.39) provided the calibration constant for the magnet.

4.4 Target Implantation

Implanted targets are frequently used at LENA. They consist of a backing material (usually a thin

tantalum sheet) with the nuclei of interest implanted into it. An Eaton ion implanter with a modified

end station (located at the University of North Carolina at Chapel Hill) is used to implant ions into tar-

get backings. The ion implanter accelerates ions from pressurised gas bottles to implantation energies

between Eion = 20 keV and ≈ 100 keV (assuming singly ionised particles). A 90◦ analysing magnet

(with a quoted selectivity of 1/100) is used to mass separate the beam to ensure pure implantation of

the ion of interest (see Fig. 4.22). The incident dose of particles is estimated by integrating the beam

current on the backing, assuming singly charged incident ions.
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Figure 4.21: Sample yield curve for the Elab
r = 326 keV resonance in 27Al(p,γ)28Si. The front edge of the

yield curve defines the magnetic field that corresponds to the resonance energy.
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Figure 4.22: Schematic of the Eaton N200 ion implanter, which was used for implanting ions into target
backings used for depth profiling. The ion source is held at a constant voltage of 20 kV above the acceleration
voltage for beam extraction.
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4.4.1 Target Thickness

The thickness of a target is usually quoted in units of energy, and corresponds to the amount of

energy that will be lost as beam particles traverse the implanted region. The desired thickness of an

implanted target depends on the experiment to be performed. Two situations are relevant for stopping

targets (i.e., the beam will stop in the target backing) used at LENA: (i) narrow resonance strengths;

a thick target (∆E ≈ 20 keV) is required to ensure that all beam particles will interact in the target

region; and (ii) a slowly varying cross section; a thin target (∆E < 10 keV) is required to measure

the shape of the cross section accurately.

Once a target thickness (in units of energy) has been chosen to best suit the experiment, the

implantation energy (energy of incident ions on a backing) needed to produce the target must be

calculated. Estimates for implantation energies are best performed with the aid of the stopping power

code SRIM [Zie04]. The user must first calculate the physical depth of a target that corresponds to

the energy loss required. For example, if 22Ne is to be implanted into a tantalum substrate to produce

a ∆E = 15 keV thick target at proton energies of Elab
p = 400 keV, SRIM would be run for protons

incident on a Ne-Ta compound at Elab
p = 400 keV and Elab

p = 385 keV. The difference in ranges is an

approximate measure for how thick the implanted region must be (80 nm in this example). The next

step is to calculate the implantation energy of 22Ne incident on pure tantalum required to produce

a target of the desired physical thickness. Once again, SRIM is used to find the beam energy of
22Ne required to reproduce a range equal to that found in the first step. This implantation energy is

Elab = 140 keV for this example. Note that target thicknesses are not required to be an exact value,

in general, so the approximate calculations outlined above are adequate for producing the targets used

at LENA. The actual thickness of the targets are then found using narrow resonance yield curves (Ch.

3).

4.4.2 Dose Calculations

The number of ions implanted into a target depends on the beam current, implantation volume,

implantation time and implantation efficiency. The required dose, D, is calculated using the simple

geometry shown in Fig. 4.23. The implantation volume is constrained by a collimator placed approx-
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Figure 4.23: Geometry used to calculate required dose in implanted targets. The target ions are implanted into
a thick target backing to a depth of d and a radius r defined by a collimator.

imately 20 cm away from the target, and by the thickness of target desired. For the present work, the

implantation region diameter was 2.5 cm. The number of backing substrate atoms, Nb, in a volume,

V , defined by V = d · r2 is given by:

Nb =
ρbV NA

Ab
(4.40)

where ρb is the backing substrate density (g cm−3), Ab is the atomic mass of the backing atoms, and

NA is Avogadro’s number. The number of required implanted ions, Nt, is therefore

Nt = ξNb (4.41)

where ξ is the stoichiometry of the final implanted target. The stoichiometry achieved depends on

the implanted ion as well as the backing substrate, which cannot typically be predicted. Examples

of experimentally determined stoichiometries can be found in Ref. [Ili07]. For the case of 22Ne ions

implanted in tantalum, a stoichiometry of approximately Ne:Ta= 1 : 3 should be achievable. The

required incident beam charge to implant Nt ions is given by

Q =
Nt

η
(4.42)

where Q is the implanted charge as read from the target, and η is the sputtering ratio. Implantation

efficiency is not typically known. However, all experiments performed at LENA require a saturated
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target in order to maximise count rates of astrophysically important reactions. For this reason, the

implantation efficiency is assumed to be a conservative 25%. For 22Ne implanted into a tantalum

backing to produce a ∆E = 15 keV thick for protons at Ep ≈ 400 keV, a dose of approximately 0.25

C is therefore required.
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5 26Mg(γ,γ′)26Mg

5.1 Introduction

AT a typical temperature near T = 300 MK, which is relevant for neutron production in mas-

sive stars and AGB stars, the Gamow peak for α-particle capture on 22Ne occurs near E0 =

600 keV. At these low bombarding energies, the Coulomb barrier dominates the α-particle partial

width and, therefore, the reaction cross section decreases dramatically with decreasing energy. A con-

sequence of the low cross section is the difficulty to measure 22Ne+α reactions directly. The lowest

measured resonance is located at Elab
r = 830 keV [Wol89, Jae01b]. Other methods must be utilised to

obtain the properties of low energy resonances in order to estimate reliable neutron production rates

in stellar environments.

Prior to the present work, the nuclear properties of levels between the α-particle threshold at

Sα = 10615 keV and the lowest directly observed resonance (Ex = 11319 keV) have been mea-

sured through neutron capture, α-particle transfer, and photo-neutron studies [Ber69, Gla86, Wal92,

Gie93, K0̈2, Uga07]. In addition to these works, Nuclear Resonance Fluorescence (NRF) experiments

using bremsstrahlung beams [Ber84, Sch09], and inelastic proton scattering experiments [Mos76,

Cra89] have observed two states in the excitation energy region of interest at Ex = 10649 keV

(Jπ = 1+) [Ber84, Sch09] and Ex = 11154 keV (J = 1(+)) [Mos76, Cra89, Sch09]. The reso-

lution of Ref. [Cra89] was approximately 60 keV. The 1+ state observed in that experiment could

therefore be attributed to a number of excited states in this energy region. Transfer measurements

(22Ne(6Li, d)26Mg) [Uga07, Gie93] have also studied low spin states between the α-particle and neu-

tron thresholds in 26Mg. Alpha-particle transfer studies typically yield excitation energy uncertainties

in excess of several keV and, furthermore, do not provide unambiguous quantum numbers to excited



states. A 26Mg(γ, γ)26Mg measurement with a polarised, mono-energetic γ-ray beam can be useful

for significantly improving uncertainties of the 22Ne(α, γ)26Mg and 22Ne(α, n)25Mg reaction rates.

The High-Intensity γ-ray Source (HIγS) at the Triangle Universities Nuclear Laboratory (TUNL),

utilising a linearly polarised γ-ray beam, is perfectly suited for this purpose.

Here, experimental results of the spin and parity measurements of dipole states in the photoexci-

tation 26Mg(γ, γ)26Mg reaction are presented. These measurements were made in the energy region

important to astrophysical reaction rate calculations. The experimental setup is discussed in Sec-

tion 5.2. Section 5.3 outlines the theory needed to interpret γ-ray angular correlation measurements.

The results of the experiment are presented in Section 5.4. A discussion follows in Section 5.5, and

conclusions are given in Section 5.6.

5.2 Experimental Setup

5.2.1 Photon Beam

The properties of excited states in a nucleus can be probed with high energy photons. A photon

beam is used to excite the ground state nucleus to the desired energy, while the de-excitation γ-rays

are observed. These beams can be produced in a variety of ways. Firstly, nuclear reactions can be used

to produce mono-energetic γ-rays. However, only those energies allowed by the nuclear structure of

the compound nucleus used will be available, hence tuning of γ-ray energies is not possible. This

method therefore has very limited applicability. Secondly, the most common method is by using

bremsstrahlung radiation1 to excite the nucleus. Bremsstrahlung radiation is produced when a charged

particle is accelerated in a high electric field, commonly an electron being deflected by the field of

an atomic nucleus. Although this method can produce a high flux of radiation, the photon energy

distribution is continuous. This creates complications in the analysis of γ-ray partial widths because

the exact shape of the bremsstrahlung energy distribution must be known precisely. In addition, decays

to other excited states are usually unresolvable because the continuous beam energy profile will excite

lower lying states in the nucleus directly. A third method of producing photon beams is by Compton

scattering laser photons from relativistic electrons. The present work was performed at the HIγS
1Originating from the German words bremsen (to brake) and strahlung (radiation)
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Figure 5.1: Design schematic of the DFEL facility. The HIγS target rooms are located to the right of the figure.
Figure obtained from Ref. [Wel].

facility, which utilises the latter method. The advantages of using Compton scattering are as follows:

(i) a mono-energetic beam (an energy spread of about 3% of the beam energy) can be produced; (ii)

the beam can be highly (almost 100%) polarised; and (iii) a high intensity of photons (107 photons/s

incident on the sample) can be achieved.

The photon beam at HIγS is produced using the Duke Free Electron Laser (DFEL). The beam

production and transportation occurs in four main parts: an electron storage ring, a magnetic undu-

lator, a resonating cavity, and the target area. An outline of the beam production follows, and more

information can be found in Refs. [Car96, Lit97, Wel09] and references therein. A design schematic

of the DFEL facility is shown in Fig. 5.1.

The Electron Storage Ring

The electron storage ring is a 107 m long “racetrack” shaped ring that is capable of accelerating

electrons up to 1.2 GeV. The electron bunches are supplied by a 180-280 MeV S-band radio frequency

linear accelerator. During HIγS operation, the storage ring contains two electron bunches, separated

by half the ring length. An electron current of about 40 mA in the storage ring is sufficient to produce

107γ/s on the sample.
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Figure 5.2: Schematic diagram of a wiggler system. The alternating magnetic field produces a characteristic
photon beam in the downstream direction.

The Magnetic Undulator

The magnetic undulator, an optical klystron, produces a polarised photon beam. Commonly

known as a “wiggler”, the oscillator consists of a set of magnets that accelerate the electron bunches

transverse to the beam direction. This motion transverse to the beam direction produces coherent light

emission by the electrons. Unlike in conventional lasers, there is no lasing medium, hence the term

“free electron laser”. Figure 5.2 shows an example of the wiggler principle. The general equation

governing the intensity, I , of radiation from an accelerating charged particle is given by [Jac98]:

d2I

dωdΩ
=

e2ω2

4π2c

∣

∣

∣

∣

∫ ∞

∞
n × (n × β) eiω(t−n·r(t)/c)dt

∣

∣

∣

∣

2

(5.1)

where: ω is the frequency of emitted radiation; Ω is the solid angle; n is a unit vector towards the

emission direction; β = v/c, where v is the velocity of the particle; and r(t) is the position of the

particle as a function of time.

If the electron is relativistic, the radiation is emitted in a narrow cone in the direction of motion.

Provided the angle of motion is less than that of the light cone, an observer situated “downstream” will

observe a continuous beam of photons. This photon beam will have a typical energy, E, depending on

the electron energy and wiggler magnetic field properties [Car96]:

E ≈
chkwγ2

π

(

1 + a2
w

)

(5.2)

where: c is the speed of light; h is Planck’s Constant; kw is the undulator wave number, which is
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obtained from the magnet spacing; γ is the relativistic Doppler shift of the electrons; and aw is the

normalised rms vector potential of the undulator, which is related to the strength of the magnetic field.

The DFEL undulator has kw = 62.8 m−1, and aw is variable from zero to 4.1 by varying the magnetic

field. The photon energy spread depends on the number of magnetic periods in the undulator, N, and

is given by: ∆E/E ∼ 1/N . The transverse motion of the electrons will produce linearly polarised

photons, with the polarisation vector transverse to the magnetic field and beam direction [Car96].

The Resonating Cavity

The resonating cavity is an optical cavity that captures the photons produced in the undulator. Fig.

5.3 shows the cavity arrangement in relation to the electron storage ring and undulator. The cavity

consists of two mirrors on either end of the undulator section of the storage ring. These mirrors are

separated by one half of the storage ring length. Therefore, the photons will pass back through the

undulator when the electron bunch has made a full circuit. The mirrors can be moved to ensure an

even number of wavelengths in the cavity so that the electric field of the photons provides additional

force on the electrons, further stimulating emission. These photons will be referred to as the laser

photons. The number of laser photons stored in the resonating cavity can reach about 1013 photons

[Car96], which corresponds to about 15 W beam power.

Undulator

Storage RingBunch

Electron

Mirror
Bunch

Photon
Optical Cavity

Figure 5.3: Representation of the resonating cavity in the DFEL. The optical cavity is tuned so that the elec-
tron and photon bunches reach the undulator simultaneously. This creates lasing as the photon electric fields
stimulate coherent photon emission from the electrons.

If a second electron bunch is added to the storage ring, separated from the first by half the ring

length, high energy photons can be produced. As the second electron bunch reaches the undulator, it
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will meet the laser photon bunch travelling in the opposite direction. The Compton scattering of laser

photons off these relativistic electrons produces high energy photons, which are polarised in the same

plane as the laser photons. In an electron’s rest frame, the energy, E′, of a scattered photon is:

E′ =
mec2E

mec2 + E (1 + cos θ)
, (5.3)

where: E is the incoming laser photon energy; me is the electron rest mass; and θ is the scattering

energy. The differential cross section of scattering is given by the Klein-Nishina Eqn. ([Kle29]):

dσ

dΩ
= r2

e

(

E′

E

)2
(

|ε∗ · ε0|2 +
(E − E′)2

4EE′

)

, (5.4)

where: re is the electron radius (re = 2.8 × 10−15 m); E and E′ are the incoming and outgoing

photon energies; ε∗ and ε0 are the polarisation vectors of the incoming laser photons and outgoing

photons, respectively. Applying these equations to the situation of low energy photons scattering

from relativistic electrons results in a high energy photon beam. Neglecting recoil effects, the photon

beam will have an energy of about (2γ2)Elab. Consider, for example, an electron energy of about

500 MeV and photon energy of 3 eV. In this case, photons will be produced with energies on the

order of 11 MeV. The photon beam will be concentrated to a narrow cone aligned with the electron

bunch direction. An example can be seen in Fig. 7 of [Kle29], where most of the beam is within one

thousandth of a radian of the electron beam direction. Equation (5.3) shows that the photon energy

depends on the scatter angle. Consequently, placing collimators downstream can tune the beam energy

width desired on the sample.

The Target Area

The target area is located about fifty metres downstream of where the γ-rays are produced in

the undulator. It is split into two main rooms: the “collimator hut”, and the “gamma vault”. The

collimators are used to select the width of the beam. Selecting a narrower beam profile restricts the

energy width and intensity of the beam. The gamma vault, situated downstream from the collimator

hut, is where experimental setups are placed. A sensitive beam imager can be placed in the gamma
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vault for accurate alignment of the beam to within a few millimetres. Accurate photon beam alignment

enables the use of smaller samples because it can be ensured that the entire beam travels through the

active area of the sample.

Parameters used in the Experiment

The storage ring of the HIγS facility was operated with two electron bunches at an energy of

Ee− = 515 − 530 MeV and a current of Ie− ≈ 45 mA. The collimator size used, which defines the

diameter of the beam incident on the sample, amounts to 1.91 cm, resulting in a beam energy spread

of about 200 keV at a beam energy of 11.0 MeV. The intensity of the 100% linearly polarised photon

beam at the sample was about 107 s−1. Four incident γ-ray beam energies were used throughout

the experiment: 10.8, 11.0, 11.2 and 11.4 MeV. A beam dump downstream from the sample reduced

Compton scattering into the detectors.

5.2.2 Samples

The sample consisted of magnesium-oxide (MgO) powder, enriched to 99.41(6)% in 26Mg. The
24Mg and 25Mg compositions were 0.41(2)% and 0.18(4)%, respectively. In addition, a spectroscopic

analysis of the sample, performed at Oak Ridge National Laboratory who provided the sample, re-

vealed only small impurities with a concentration in excess of 10 parts per million: iron (10 ppm);

and zinc (20 ppm). Impurities of less than 10 ppm could not be detected in that analysis, and are

irrelevant for the present work. The total sample mass amounted to 16418.5 mg, corresponding to a
26Mg mass of 10162.5 mg. The sample was contained in a polycarbonate cylindrical container with

0.16 cm thick walls and end caps, with an inner cavity of 2.30 cm in diameter and 3.10 cm in length.

The sample container was suspended in a sample holder consisting of a plastic ring with a fishing line

lattice as shown in Fig. 5.4. The fishing line held the sample in place in the centre of the beam line

while minimising material that could create scattering events. In addition, a natural magnesium oxide

(natMgO) sample (79% 24Mg, 11% 25Mg, 10% 26Mg), housed in an identical polycarbonate container,

was used for background measurements and energy calibrations. This natMgO sample had a mass of

4.3 g.
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Figure 5.4: The 26MgO sample suspended in the sample holder. The sample holder consists of a ring with
fishing line to suspend the sample. This reduces the amount of material available for Compton scattering,
which would produce background in the detectors.

5.2.3 Detectors

Four High Purity Germanium (HPGe) detectors with relative efficiencies of 60% were used in

the measurements. The detectors were arranged around the sample as shown in Fig. 5.5. Three

detectors, two vertical and one horizontal, were positioned perpendicular to the incident beam, while

one detector, the “out-of-plane” detector, was located outside the vertical plane. These positions were

chosen in order to determine the spins and parities of 26Mg excited states unambiguously, as will be

discussed in Section 5.3.

Each detector was placed at a distance of about 10 cm from the centre of the sample. After po-

sitioning, the γ-ray beam was aligned with a high resolution beam imager to ensure homogeneous

beam intensity across the sample. Small detector geometry differences were later accounted for by

using Monte-Carlo simulations and radioactive source measurements and will be discussed in Sec.

5.4.1. The internal geometry of the detectors is shown in Fig. 5.6, and dimensions provided by the

manufacturer are tabulated in Tab. 5.1. Each detector had a passive shield and absorber comprised

of lead and copper. The purpose of the absorbers was to reduce contributions from low energy back-

ground and 511 keV annihilation γ-rays produced in the sample. A copper plate, approximately 1 m
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Figure 5.5: The detector setup used for energy and spin-parity measurements of 26Mg excited states. The
sample was placed at the centre of the array consisting of four 60% HPGe detectors, where the labels “V”,
“H”, and “O” represent the vertical, horizontal and out-of-plane detectors, respectively. The dark grey cylinders
shown on the detector front faces are passive lead and copper shields. The detector labels correspond to the
indicies referred to in the text.
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Figure 5.6: Schematic of the internal HPGe geometry. Shown is the HPGe crystal (of length L and diameter
D) mounted in an aluminium end cap. The crystal has a contact pin (length l and diameter d).

Detector L (cm) D (cm) l (cm) d (cm)
1 8.90 6.46 7.27 1.12
2 7.75 6.82 7.09 1.17
3 6.83 6.97 6.00 0.99
4 8.05 6.80 7.31 0.93

Table 5.1: HPGe crystal geometries as shown in Fig. 5.6.

downstream of the sample was used to Compton scatter beam photons into an additional 135% HPGe

detector, which was placed 4 m downstream of the sample. This detector is about 5◦ out of the beam

so that it cannot be reached directly by the incident beam. A lead shield behind the sample prevents

scattering from the sample into the 5◦ detector. Through Monte-Carlo simulations, the photon flux can

be reconstructed by matching the Compton scattering spectrum measured in the 135% HPGe detector.

This detector can also be moved into the beam to measure the beam energy profile (low fluxes must

be used for this to avoid overloading the detector).

5.3 Nuclear Resonance Fluorescence

A linearly polarised photon beam incident on a Jπ = 0+ target nucleus, such as 26Mg, gives

rise to a distinct radiation pattern depending on the quantum numbers of the excited states [Bie53].

The observed intensity pattern is referred to as polarisation-direction correlation. This type of angular

correlation is described in detail in Ref. [Bie53]. The detector geometry was similar to the one used

in earlier experiments at the HIγS facility (see Ref. [Wel09] and references therein). The only change
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performed in the present work was to move one of the horizontal detectors out of the vertical plane to

a backward angle. This change was necessary to unambiguously distinguish between radiation from

J = 1 and J = 2 excited states (see below).

For an incident linearly polarised γ-ray beam, the angular correlation function, which is pro-

portional to the probability of de-excitation in a particular direction, for pure transitions (i.e., those

involving unique quantum numbers) is given by [Bie53]:

Wtheory(θ, φ) =
∑

n

Fn(L1, L1, j1, j)Fn(L2, L2, j2, j)

×
[

Pn(cos(θ)) + (−1)σ1
〈L11L11|n2〉

〈L11L1 − 1|n0〉

(

(n − 2)!

(n + 2)!

)1/2

cos (2φ)P (2)
n (cos(θ))

]

Fn(La, L
′
a, ja, j) = (−1)ja−j−1

√

(2j + 1)(2La + 1)(2L′
a) 〈La1L′

a − 1|n0〉W (jjLaL
′
a; nja)

(5.5)

where n is an even integer ranging from 0 to nmax = min(2j + 1, 2L1 + 1, 2L2 + 1); the subscripts

‘1’ and ‘2’ refer to the first (incident beam) and second (detected photons) radiations (the incident

beam has known polarisation); 〈La1L′
a − 1|n0〉 is a Clebsch-Gordan coefficient; W (jjLaL′

a; nja) is

a Racah coefficient; Pn(cos θ) is an nth order Legendre polynomial; and P (2)
n (cos(θ)) is an nth order

associated Legendre polynomial; j1, j and j2 correspond to the initial, intermediate and final state

spin, respectively; L1 and L2 are the excitation and de-excitation γ-ray multipolarities, respectively;

and σ1 = 0 for electric transitions, σ1 = 1 for magnetic transitions. The angles in Eq. (5.5) are defined

as follows: (i) θ is the angle of the emitted radiation with respect to the direction of the incoming

photon ray beam. (ii) φ is the angle between the polarisation plane of the incoming radiation (the

horizontal plane in our experiment), and the plane defined by the direction of the incoming γ-ray

beam and the normal to the plane defined by the incoming γ-ray beam and the emitted radiation

direction. A sample decay scheme and the angles θ and φ are shown in Fig. 5.7.

The angular correlations for the most important spin sequences of relevance in the present work

are given below (the three Jπ values refer to the sample ground state (0+), the intermediate excited
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Figure 5.7: (a) Sample level scheme, showing excitation and de-excitation of a nucleus. (b) Definition of
the coordinate system used in Eq. (5.5). The angle θ is defined as the angle between the emitted radiation and
the incoming γ-ray beam. Angle φ is the angle between the polarisation plane of the incoming γ-ray beam,
and the plane defined by the direction of the incoming γ-ray beam and the normal to the plane defined by the
incoming γ-ray beam and the emitted radiation direction. For example, if the emitted γ-ray is detected in a
counter located in the horizontal plane, φ = 90◦.

state, and the final state, respectively):

0+ → 1± → 0+ : Wtheory(θ, φ) = 1 +
1

2

[

P2(cos θ) +
1

2
(−1)σ1P (2)

2 (cos θ) cos(2φ)

]

(5.6)

0+ → 2± → 0+ : Wtheory(θ, φ) =1 +

[

5

14
P2(cos θ) +

8

7
P4(cos θ)

]

− (−1)σ1

[

5

28
P (2)

2 (cos θ) −
2

21
P (2)

4 (cos θ)

]

cos(2φ)

(5.7)

0+ → 1± → 2+ : Wtheory(θ, φ) = 1 +
1

20

[

1

10
P2(cos θ) +

1√
2
(−1)σ1P (2)

2 (cos θ) cos(2φ)

]

(5.8)

For the detector positions shown in Fig. 5.7, Eqs. (5.6)–(5.8) yield values for Wtheory(θ, φ) that are

listed in Tab. 5.2. Finite solid angle effects were accounted for using Monte Carlo simulations. The

adjusted, experimentally expected, angular correlations Wadj(θ, φ) are also listed in Tab. 5.2.

83



Wtheory(θ, φ) Wadj(θ, φ)
Sequence H V O H V O

0+ → 1+ → 0+ 1.50 0 1.50 1.47 0.04 1.47
0+ → 1− → 0+ 0 1.50 0.75 0.04 1.47 0.75
0+ → 2+ → 0+ 2.50 0 0 2.36 0.07 0.08
0+ → 2− → 0+ 0 2.50 1.25 0.06 2.31 1.22
0+ → 1+ → 2+ 1.05 0.90 1.05 1.05 0.90 1.05
0+ → 1− → 2+ 0.90 1.05 0.975 0.90 1.05 0.97

Table 5.2: Angular correlations for spin sequences that are relevant for the present analysis. The detectors
were placed as follows: the horizontal detector (“H”) at (θ,φ) = (90◦, 90◦); the two vertical detectors (“V”) at
(θ,φ) = (90◦, 0◦); and the out-of-plane detector (“O”) at (θ,φ) = (135◦, 90◦) (see Fig. 5.7). Columns 2, 3,
and 4 list the theoretical angular correlations, calculated using Eq. (5.5). Columns 5, 6, and 7 show the adjusted
angular correlations, Wadj(θ,φ), accounting for finite detector and sample solid angle effects.

In order to better visualise the angular correlations, expected radiation patterns for sample spin

sequences are shown in Fig. 5.8. Consider first the sequence 0+ → 1− → 0+, shown in the upper

left panel of Fig. 5.8. No intensity is observed by the horizontal detector (H), maximum intensity

is observed by the vertical detector (V), and some intensity is observed by the out-of-plane detector

(O). A very different radiation pattern is observed for the spin sequence 0+ → 1+ → 0+ (upper

right panel). Maximum intensity is now observed in both the horizontal and out-of-plane detectors,

and no intensity is observed in the vertical detector. Consider now, the 0+ → 2+ → 0+ sequence

(lower left panel). The vertical and horizontal detectors observe the same intensity ratios as for the

0+ → 1+ → 0+ spin sequence, and thus could not distinguish the excitation of a Jπ = 1+ or 2+

intermediate state based on these two detectors alone. This was the reason why a detector was placed

out of the vertical plane: it detects no intensity for a 2+ intermediate state, whereas maximum intensity

is observed for a 1+ intermediate state. The radiation patterns are distinct, and lead to unambiguous

spin-parity assignments for the intermediate (excited 26Mg) state.

5.4 Procedure and Results

Incident beam energies of Eγ = 10.8, 11.0, 11.2 and 11.4 MeV were used to populate excited

states in 26Mg. For each energy, the beam was incident on the sample for approximately 11 hours.

Additionally, measurements were performed on a natural natMgO sample at the same incident photon
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Figure 5.8: The angular correlation distributions for sample spin sequences: 0+ → 1− → 0+, 0+ → 1+ →
0+, 0+ → 2+ → 0+, and 0+ → 1− → 2+. The labels refer to the detector position (“V”: vertical plane; “H”:
horizontal plane; and “O”: out-of-plane). The out-of-plane detector is shown at θ = 45◦ rather than θ = 135◦

for reasons of clarity (the distributions are symmetric around θ = 90◦).

beam energies as for the 26MgO sample, but for only half of the acquisition time. These data are im-

portant for two purposes: (i) for background peak identification from sample impurities, particularly

from 24Mg, as well as from the container; and (ii) for the detector energy calibration. The background

runs helped us to unambiguously assign observed transitions to 26Mg. The beam energy spread had

a full width at half maximum of about 2%, corresponding to 200 keV at Eγ = 11.0 MeV. This res-

olution was determined by first inserting beam attenuators into the photon beam to reduce the flux

to acceptable limits, and then inserting the 135% HPGe detector. The beam energy spread could be

extracted from the high-energy part of the detected spectrum, which was least affected by the detector

response (that is, from Compton scattered events and pair-production γ-rays).
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5.4.1 Detector Calibrations

Energy calibrations of the HPGe detectors were performed using room background lines and

with nuclear reactions. Well-known room background lines below 3 MeV (40K, 208Tl) were used

as low energy calibration points. In addition, spectra using natMgO were recorded by populating

the well-known 24Mg excited state at Ex = 9967.8(3) keV, which decays to the first excited state

at Ex = 1368.675(6) keV [End90] with the emission of nearly isotropic radiation. This isotropic

radiation yields a further energy calibration point.

During the experiment, gain instabilities caused peaks to shift in the spectrum several times. Fig.

5.9 shows an example of this gain shift. These shifts meant that the calibration from 24Mg could not

be used without first applying a correction to the spectra recorded each day. In the experiment, there

were two sets of runs: the calibration run in which decays from 24Mg were observed, and the data runs

containing room background lines. The data runs could initially be calibrated so that all background

peak channels (Ci, where i refers to the run number) coincide with the calibration run channels (Ccal).

The second energy calibration using room background and 24Mg could then be applied.

The initial calibration between data runs, i, and calibration run was performed according to

Ccal = aiCi + bi, (5.9)

where ai and bi are the calibration coefficients needed to shift the channels of each run, i, to those of

the calibration run. The energy, E, is related to the calibration run through:

E = aCcal + b (5.10)

Combining these equations gives an expression with which each run can be individually calibrated:

E = aiaCi + (abi + b) (5.11)

The parameters are obtained through separate linear model least-squares fits of known background

γ-ray lines and the one γ-ray observed in 24Mg(γ,γ′). The known background lines used were from
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Figure 5.9: Effect of gain shift on detected peaks. The shift occurred during run number 6, and occurred
suddenly because two distinct peaks are visible for that run. This shift appears in all detectors. The cause of
such shifts has not been found.

208Tl at Eγ = 1460.851(6) keV [Cam04], and from 40K at Eγ = 2614.529(10) keV [Mar07].

Detector efficiencies must be known in order to obtain spin-parity assignments and decay branch-

ing ratios. A combination of radioactive source measurements and Monte-Carlo simulations was used

to obtain the full-energy peak efficiencies of the detectors (escape peaks were not used in the analy-

sis). The radioactive sources used were 60Co and 56Co, which yield efficiencies up to about Eγ = 3.5

MeV. The sum-peak method [Kim03] was used with 60Co to obtain absolute efficiencies, independent

of source activities.

Coincidence summing also occurs in the efficiency measurement of decays from 56Co. In this

case, however, the effect can be assumed to be negligible because the decay is highly fragmented and

the solid angles of the detectors are relatively small. For example, in the 60Co spectrum for detector

1, the number of counts observed in the sum-peak (Eγ = 1173 + 1332 keV) was 0.2% of the number

of counts in the Eγ = 1173 keV peak. Any summing out effects, where counts are lost from a peak

caused by coincidence summing, will therefore be negligible. The 56Co full energy peak efficiencies

were then normalised to those measured with 60Co. The photo-peak efficiency of a detector can be

approximated by [Tra99]:

ln
(

εp
γ

)

= a + b ln(Eγ) + c ln(Eγ)2, (5.12)
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Figure 5.10: The full energy peak efficiencies of the four detectors used for the quantum number assignments
of excited states in 26Mg. Detector 3 has consistently lower efficiencies because of its 45◦ placement; the
diameter of the beam pipe requires that the detector is moved to a further distance from the sample.

This approximation for the photo-peak efficiency is fit to the 56Co data. The value of the fit at Eγ =

1173 keV was used to normalise the 56Co efficiencies to the 60Co data. The normalised photo-peak

efficiencies of the four detectors are shown in Fig. 5.10.

Monte Carlo simulations were then used to extrapolate full-energy peak efficiencies to higher

energies covered in the present experiment. The Monte-Carlo code used for this experiment was

Geant4 [Ago03]. A schematic of the geometry used in the simulation is shown in Fig. 5.11. The

entire setup, including all four detectors was included in the simulations. This accounted for Compton

scattered γ-rays from one detector to another. The beam pipe was also included in the simulations

to account for scattering of beam photons into the detectors. The effect of atomic absorption of γ-

rays in the sample was accounted for by including an extended MgO source, which emitted γ-ray s

isotropically.
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Figure 5.11: Geometry used in the Geant4 efficiency simulations. See text for details.

Simulations were performed at a variety of energies, up to about 12 MeV. Two separate simulations

for 60Co were also performed. One using an extended source, and one for a point source, to simulate

the radioactive source measurements. This enables the correction of the source measurements to allow

for a finite sample size. The simulated efficiencies can then be normalised to the radioactive source

measurements. The normalisation factors needed to match simulated efficiencies with experimental

efficiencies are shown in table 5.3. In addition to an absolute normalisation of simulated efficiencies,

the normalisation as a function of energy was calculated. If the normalisation is not constant over the

energy range covered by radioactive sources, the geometry used in the simulation does not accurately

reflect that of the true detector setup and efficiencies cannot be reliably extrapolated to high energies.

Figure 5.12 shows the ratio of simulated and experimental photo-peak efficiencies for 56Co as a func-

tion of energy, which shows a slope consistent with unity. The simulated efficiencies, therefore, agree

with experimental efficiencies. To reduce the uncertainties in the fit, a more extensive study would be

required, which is outside the scope of the current project.

The results of the simulations are shown in figure 5.13. Detection efficiencies for individual full-
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Detector Normalisation
εp εT

1 1.0157 1.0538
2 1.0668 1.0730
3 1.0368 1.1556
4 0.9513 1.0299

Table 5.3: The normalisation factors needed to match simulated and experimental efficiencies.
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Figure 5.12: Ratio of simulated and experimental peak efficiencies versus energy. The solid line represents
a linear fit to the ratios, while the dotted lines represent the uncertainties of the fit. The fit parameters for the
equation R = aE + b are a = 1.4(1.6) × 10−5 and b = 1.010(20).

90



0 3000 6000 9000 12000
Energy (keV)

1e-05

1e-04

1e-03

1e-02
Fu

ll 
En

er
gy

 P
ea

k 
Ef

fic
ie

nc
y

Detector 1
Detector 2
Detector 3
Detector 4

0 1000 2000 3000 4000
Energy (keV)

6.0e-04

2.0e-3

1e-03

Figure 5.13: Peak efficiencies for the four 60% HPGe detectors, as simulated in Geant4 (upper panel). These
efficiencies have been normalised to the 60Co experimental point at Eγ = 1173 keV, which in turn is corrected
for finite sample size. Differences in absolute magnitude of efficiency are because of differences in detector
sizes, as shown in table 5.1. The lower panel shows the agreement of simulated efficiencies with measured 56Co
photo-peak efficiencies for detector 1.

91



energy peaks were obtained by cubic spline interpolation between simulated full-energy peak efficien-

cies. The uncertainty of full-energy peak efficiencies near Eγ = 11 MeV, arising from uncertainties

in both detector geometry and other experimental uncertainties were assumed to be 5%.

5.4.2 Excitation Energies

All γ-ray energies measured in the experiment were corrected for both recoil shift and Doppler

shift. The recoil shift reduces the energy of an emitted γ-ray because momentum and energy conser-

vation dictates that as an excited nucleus decays, it must recoil in the opposite direction to the γ-ray

emission with some share of the decay energy. By considering the centre of mass before and after the

decay, one obtains for energy and momentum:

Ex = EB + Eγ (5.13)

0 =
Eγ

2
+
√

2mBEB, (5.14)

where Ex = Ei − Ef is the energy difference between initial, Ei, and final, Ef , states; Eγ is the

detected γ-ray energy; mB is the mass of the decaying nucleus; and EB is the energy of the recoiling

nucleus. Solving these equations, the transition energy is:

Ex = Eγ +
E2

γ

2mBc2
(5.15)

For calibration purposes, γ-ray energy is required and Eqn. (5.15) can be rearranged into a Taylor

series, with the result

Eγ ≈ Ex −
E2

x

2mBc2
(5.16)

The Doppler shift of emitted γ-rays occurs because the excited nucleus will have momentum in

the direction of the photon beam (provided that is does not slow down before decaying). The out-of-

plane detector will therefore measure a smaller γ-ray energy. The Doppler shift of a γ-ray with energy

Eγ , detected at angle θ is given by:

∆ED =
v

c
Eγ cos θ, (5.17)
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where v is the velocity of the recoiling nucleus. Using the momentum conservation in Eqn. (5.14), the

Doppler shift becomes:

∆ED =
Eγ

mBc2
cos θ (5.18)

Peak energies were obtained from the centre-of-mass (first moment) of each peak in the spectra.

This method is preferable to fitting a Gaussian because of the low number of counts in the peaks. The

peaks are not normally distributed for low count rates, so the centroid of a peak and its uncertainty are

defined by:

C =

∑n
i=1 xiyi
∑n

i=1 yi
(5.19)

σc =

√

∑n
i=1 yi(xi − C)2

(n − 1)
∑n

i=1 yi
(5.20)

where xi is the energy of channel i (i = 1 corresponds to the first channel of the peak), and yi is the

number of counts in that channel.

To obtain the excitation energy, a weighted average of the excitation energies obtained from all

detectors was performed. The uncertainties in observed γ-ray energies arise from statistical uncertain-

ties and uncertainties in the energy calibration. Almost every ground state transition that was observed

was accompanied by one or more de-excitations to intermediate states. The excitation energy uncer-

tainties could be reduced by including the energies of these intermediate state transitions. For each

transition observed, the γ-ray energy was corrected for the recoil and Doppler shifts. Table 5.4 shows

the comparison between the presently derived excitation energies and the literature values. It can be

seen the the new Ex values agree with previous results, but the uncertainties are significantly smaller.

5.4.3 Quantum Numbers and Branching Ratios

Quantum numbers of the observed states were assigned by analysing the observed radiation pat-

tern. Note that intensity was was observed at the locations where the theoretical angular correlation

W (θ, φ) is zero because of finite solid angle effects. Such effects were modelled using Monte Carlo

simulations (Sec. 5.4.1) and could be accounted for.

The efficiency corrected measured full energy peak intensities, normalised to the theoretical angu-
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Excitation Energy (keV)
Present [End98] [K0̈2] [Uga07] [Sch09]

10573.3 (8) 10567 (3)
10647.3 (8) 10646 (2) 10648.8 (5)
10805.7 (7) 10805.9 (4) 10808 (20)
10949.1 (8) 10945 (3) 10953 (25)
11153.5 (10) 11153.2 (2) 11153.386 (86) 11153.8 (12)

Table 5.4: Excitation energies in 26Mg for states populated in the present experiment. Shown also are the
excitation energies reported in the literature. Excitation energies from Ref. [End98] are compiled from original
sources.

lar correlations for each ground state transition are shown in Tab. 5.5. Comparison to the Wadj(θ, φ)

values listed in Tab. 5.2 was performed by normalising the highest observed intensity to the adjusted

theoretical angular correlation expected in that detector. The normalisation was performed in this

way because Wadj(θ, φ) describes the theoretical scaling of detected intensities between detectors for

a chosen spin-sequence. After normalisation, comparison of observed intensities with the theoretical

angular correlations in Tab. 5.2 immediately reveals the spin sequence that gives rise to the observed

intensities. These comparisons are shown in Fig. 5.14 for four of the ground state transitions listed

in Tab. 5.5. The unambiguous Jπ assignments are consistent with previous Jπ assignments or re-

strictions, except for one case (see below). Branching ratios were calculated from the observed peak

intensities and corrected for angular correlations and detector efficiencies. Table 5.6 shows the branch-

ing ratios observed in the experiment. They agree with previous measurements [Ber84, Wal92], with

one exception that is discussed below. In addition, the relatively low background from the monoen-

ergetic γ-ray beam allowed for resolving additional, weaker decay branches of populated states. The

observed decay schemes for each incident beam energy are shown in Figs. 5.16-5.19.

Sample spectra, which were recorded at a beam energy of 11.2 MeV for approximately 11 hours,

are shown in Fig. 5.15. The decay of two states at Ex = 11154 keV and Ex = 10949 keV is observed,

which will be used to illustrate the assignment of quantum numbers to excited states. Decay of the

populated state at Ex = 11154 keV is observed to the ground state (0+) as well as the excited state at

Ex = 3589 keV (0+). Approximately equal intensity (after proper efficiency corrections) is found in

the horizontal and out-of-plane detectors, and no intensity in the vertical detectors. According to the
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Present Results Literature Jπ Assignments
Ex IH IV IO Jπ [End98] [Gla86] [Uga07] [Sch09]

10573 ≤ 1.2 1.47 (3) ≤ 1.3 1−

10647 1.45 (3) 0.044 (9) 1.47 (3) 1+ 1+ 1+

10805 ≤ 0.5 1.47 (4) ≤ 0.9 1− (0+ − 4+) N
10949 ≤ 0.4 1.47 (1) 0.6 (3) 1− (4 − 7) N
11154 1.47 (9) 0.015 (7) 1.44 (9) 1+ 1− 1

Table 5.5: Observed ground state transition intensities (efficiency corrected) and resulting quantum numbers
for excited states in 26Mg; IH,V,O refers to the relative intensity (normalised to the angular correlations) observed
in the horizontal, vertical and out-of-plane detector, respectively; the label, “N”, refers to natural parity (i.e.,
Jπ = 0+, 1−, 2+, . . .). The upper limits listed here correspond to 90% Gaussian confidence limits.
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Figure 5.14: Efficiency corrected, measured intensities (circles) for the four ground state transitions listed in
Tab. 5.5 compared to the adjusted theoretical angular correlations (dashed lines) from columns 5, 6, and 7 in
Tab. 5.2 for the assigned spin-parities. The measured intensities are normalised so that the highest intensity
for each transition equals the maximum adjusted theoretical angular correlation. Upper limit assignments are
indicated with arrows.
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Initial Excited State, Exi (keV), Jπ
i

10573 10647 10806 10949 11154
Exf

(keV) Jπ
f 1− 1+ 1− 1− 1+

0 0+ 0.47 (10) 0.876 (27) 0.218 (61) 0.138 (19) 0.688 (81)
1809 2+ 0.0155 (18) 0.782 (87) 0.572 (29) 0.029 (4)
2938 2+ 0.0636 (30) 0.135 (13)
3589 0+ 0.047 (7) 0.110 (22)
4333 2+ 0.108 (96) 0.077 (11)
4972 0+ 0.528 (91) 0.0162 (13) 0.096 (24)
5292 2+ 0.0163 (13)
7100 2+ 0.0124 (12)

Table 5.6: Observed branching ratios from excited states in 26Mg. The initial excitation energy, Exi
, spin-

parity, Jπ
i , and branching ratio, Bγ , are from the present work. The final excitation energy, Exf

, and spin-parity,
Jπ

f , are from Ref. [End90].

expected angular correlations, summarised in Tab. 5.2 and shown in Fig. 5.8, both of these observed

γ-rays must arise from a 0+ → 1+ → 0+ spin sequence and the state is thus assigned Jπ = 1+.

Decay from the Ex = 10949 keV excited state to the first excited state at Ex = 1809 keV (Jπ = 2+)

can also be seen in Fig. 5.15. This decay is observed with similar intensity in all detectors. The

radiation pattern is consistent with an expected pattern for a 0+ → 1− → 2+ spin sequence (Tab. 5.2

and Fig. 5.8). Thus, this state can be assigned an unambiguous spin-parity of Jπ = 1−.

5.5 Discussion

Five excited states were observed in this experiment. The relatively low beam induced background

at the HIγS facility, coupled with good separation of states, allowed for observation of very weak

branching ratios (Tab. 5.6) and for the assignment of unambiguous quantum numbers for every excited

state observed in the study. Previously, two of the states had unknown quantum numbers, and large

energy uncertainties, which have now been determined with significantly improved precision. One

additional state had previously assigned quantum numbers, which are shown to be inconsistent with

the current results. A detailed discussion of individual states follows below.

The state observed at Ex = 10573 keV was previously been observed at Ex = 10567(3) keV in

inelastic proton scattering [Mos76]. The quantum numbers of the state have been determined to be
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Figure 5.16: The observed decay scheme of 26Mg obtained with an incident γ-ray beam energy of Eγ =
10.8 MeV. The observed intensities (corrected for detector efficiencies) are proportional to the displayed arrow
widths. For clarity, the 10647 keV γ-ray is displayed with one tenth of its true intensity. The displayed γ-ray
energies are approximate in this figure.
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Figure 5.17: The observed decay scheme of 26Mg obtained with an incident γ-ray beam energy of Eγ =
11.0 MeV. The observed intensities (corrected for detector efficiencies) are proportional to the displayed arrow
widths. The displayed γ-ray energies are approximate in this figure.
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Figure 5.18: The observed decay scheme of 26Mg obtained with an incident γ-ray beam energy of Eγ =
11.2 MeV. The observed intensities (corrected for detector efficiencies) are proportional to the displayed arrow
widths. The displayed γ-ray energies are approximate in this figure.
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Figure 5.19: The observed decay scheme of 26Mg obtained with an incident γ-ray beam energy of Eγ =
11.4 MeV. The observed intensities (corrected for detector efficiencies) are proportional to the displayed arrow
widths. The displayed γ-ray energies are approximate in this figure.
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Jπ = 1− in the present experiment, where none were assigned previously. Branching to the ground

state and to the excited state at Ex = 4972 keV were observed for the first time in the present work.

The state at Ex = 10647 keV has previously been observed at Ex = 10646(2) keV with Jπ = 1+

and a mean lifetime of τm = 110(30) [End98], and by Ref. [Sch09] at Ex = 10648.8(5) keV. The

current analysis agrees with the energy and quantum number assignments for this state. Only the

ground state transition has previously been measured by Berg et al. [Ber84]. In total, five decays from

this level were resolved, the strongest of which is the ground state transition, with a branching ratio of

87.6 (27)%.

The state at Ex = 10806 keV was previously observed in a thermal neutron capture experiment

on 25Mg at Ex = 10805.9(4) keV [Wal92] and in α-particle transfer measurements on 22Ne at Ex =

10808(20) keV [Uga07]. The neutron capture experiment placed restrictions on this state’s quantum

numbers by observing the decay to the first excited state. The α-particle transfer work assigned

natural parity. In the present work, an unambiguous Jπ = 1− assignment is obtained, consistent with

the literature restrictions. The observed decay scheme agrees with that of Ref. [Wal92], but resolves

an additional weak branch to the ground state.

Levels near the Ex = 10950 keV state have previously been observed in three experiments:
26Mg(p,p′)26Mg at Ex = 10950 keV [Mos76], 22Ne(6Li,d)26Mg at Ex = 10953(25) keV [Uga07],

and 23Na(α,pγ)26Mg at Ex = 10943(2) keV [Gla86]. The current unambiguous assignment of Jπ =

1− is consistent with the natural parity assignment made in the α-particle transfer measurement, but

is inconsistent with the decay observed in Ref. [Gla86]. That work reports secondary decays to Ex =

7953 keV (Jπ = 5−) with a branching ratio of 64.5%, and to Ex = 9169 keV (Jπ = 6−) with a

branching ratio of 36.5%. Empirical rules [End90] lead to Jπ = (4+ − 7−) for the decaying state.

Giesen et al. [Gie93] also observed a state at 10.95 MeV, and assigned Jπ = (2+, 3−, 4+). The most

likely explanation for the disagreement to the present Jπ assignment is the presence of a doublet at

this energy, as suggested by Ref. [Uga07]. Since there is not enough information to determine which

of these states has the large α-particle width seen by Ref. [Uga07], 22Ne+α thermonuclear reaction

rate calculations should be performed using the observed α-particle width as an upper limit for both

states.

The excited state observed at Ex = 11154 keV corresponds to a 22Ne(α,n)25Mg resonance at
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Er(lab) ≈ 630 keV, believed to have been seen by Refs. [Dro91, Har91], but later proven to be caused

by background from 11B [Dro93]. An expected resonance at this location has since been treated as the

most important expected contribution to the 22Ne(α,n)25Mg reaction rate, and has been searched for

repeatedly [Gie93, Jae01b, Dro93, Uga07]. A state near this energy has also been observed through

inelastic proton scattering at Ex = 11156 keV [Mos76] and Ex = 11150 keV [Cra89], photo-neutron

studies at Ex = 11153.8 keV [Ber69], neutron capture on 25Mg at Ex = 11153.387(86) keV [K0̈2],

and photo-excitation experiments [Ber84, Sch09]. The proton scattering experiment of Ref. [Mos76]

and photo-excitation experiments did not assign quantum numbers, but the work of Ref. [Ber69] sug-

gested a spin-parity of Jπ = 1−. Ref. [Cra89] made a spin-parity assignment of Jπ = 1+. However,

excitation energy uncertainties of about 60 keV in that experiment lead to ambiguity regarding which

excited state was observed. In the current work, this state was observed with very good statistics and

energy resolution, as shown in Fig. 5.15. The present angular correlation measurements using 100%

linearly polarised photon beam assign an unambiguous Jπ = 1+ value to this level. This finding is

significant since it rules out any contributions of this unnatural parity level to the 22Ne+α reaction

rates. No branchings to secondary excited states were observed in other experiments. A total of four

branchings were observed from this level (Tab. 5.6).

5.6 Conclusion

The 22Ne(α,γ)26Mg and 22Ne(α,n)25Mg reactions, which are important for s-process neutron

production, proceed through excited states in the compound nucleus: 26Mg. The important excitation

energy region in 26Mg, corresponding to relevant resonances in 22Ne+α, ranges from the α-particle

threshold at Sα = 10615 keV to Ex ≈ 11600 keV. Many of the states in this energy region have

uncertain excitation energies and quantum numbers, which are essential ingredients for reaction rate

calculations.

A 26Mg(γ, γ)26Mg experiment was performed at the HIγS facility with γ-ray beam energies of

Eγ = 10.8, 11.0, 11.2 and 11.4 MeV to determine the quantum numbers of excited states in 26Mg. In

total, five excited states were identified, with Ex = 10573.3(8) keV (Jπ = 1−), Ex = 10647.3(8)

keV (Jπ = 1+), Ex = 10805.7(7) keV (Jπ = 1−), Ex = 10949.1(8) keV (Jπ = 1−), and
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Ex = 11153.5(10) keV (Jπ = 1+). The excited states at Ex = 10806 keV and Ex = 10949 keV

have previously been observed in α-particle transfer studies with undetermined quantum numbers.

The present results for these states, which are located below the neutron threshold, are expected to

significantly influence the 22Ne(α,γ)26Mg reaction rate. The unnatural parity state observed at Ex =

11154 keV was previously believed to be an important resonance in the 22Ne+α reactions. However,

the present results show that this state is irrelevant for neutron production in the s-process.
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6 22Ne(p,γ)23Na Resonance Strength

6.1 Introduction

NUCLEAR reaction rates of many important stellar burning processes are dominated by reso-

nances in the reaction cross section. Many resonance strengths for capture reactions involving

noble gases have been measured previously using implanted targets, where in most cases, the target

backing was a thin (≈ 0.5 mm thick) tantalum sheet. In such cases, it is notoriously difficult to obtain

absolute strengths since the stoichiometry of the implanted region must be known in order to extract

a strength from a thick-target excitation function.

Measurements of astrophysically important reactions are typically performed at low beam en-

ergies, corresponding to low nuclear burning temperatures in stellar environments. However, the

only absolutely measured strength in 22Ne(p,γ)23Na corresponds to the Elab
r = 1278 keV resonance

[Kei77], which is beyond the reach of most low energy accelerators. For this resonance, the stoi-

chiometry of the implanted 22Ne targets was obtained with Rutherford back-scattering, requiring spe-

cialised equipment not widely available in low-energy accelerator laboratories. Here a novel method

is presented for extracting absolute resonance strengths at low bombarding energies from measured

excitation functions.

This new method, based on material depth profiling, is applied to the measurement of the Elab
r =

479 keV resonance in 22Ne(p,γ)23Na. The experiment utilises a target composed of 22Ne ions im-

planted into an aluminium substrate. By measuring the well-known Elab
r = 406 keV resonance in

27Al(p,γ)28Si and the Elab
r = 479 keV resonance in 22Ne(p,γ)23Na simultaneously, the absolute

strength of the latter resonance can be obtained independently from the knowledge of absolute beam

currents, absolute detector efficiencies, or the stoichiometry of the target. Obtaining a resonance



strength independently of the target stoichiometry, which introduces systematic uncertainties that are

difficult to quantify, is a significant advantage of this method.

For more information on the theory of depth profiling of an implanted substrate, see chapter 3.

Throughout this work, kinematic quantities are given in the centre-of-mass reference frame, unless

stated otherwise.

6.2 Excitation Functions from an Implanted Aluminium Substrate

In the present work, 22Ne ions were implanted into a thick aluminium sheet yields of the narrow

resonances at Elab
r = 406 keV in 27Al(p,γ)28Si and at Elab

r = 479 keV resonance in 22Ne(p,γ)23Na

were measured simultaneously. For both resonances, the yield is given by Eq. (3.20). In the follow-

ing, the implanted species (p =22Ne) will be denoted by the subscript 22, and the substrate species

(q =27Al) by the subscript 27.

Since the implanted 22Ne ions are concentrated near the surface of the aluminium sheet, a well-

defined peak-shape is expected for the 22Ne+p yield curve. On the other hand, the 27Al+p yield curve

will reveal an interesting structure. In the pure aluminium region, beyond the implanted 22Ne depth,

the 27Al+p yield will be at a maximum (ρ22 = 0 in Eq. (3.12)). However, in the 22Ne implanted

region, ρ22 2= 0 and thus the energy loss, ∆i, in Eq. (3.20) increases, resulting in a smaller yield.

Therefore, a step in the excitation function is expected caused by the implanted region near the surface

of the target. The situation is shown schematically in Fig. 6.1.

The general strategy was the following: (i) fit Eq. (3.20) to the measured 27Al+p yield curve,

including the step on the front edge; this allowed the extraction of the stoichiometry, ξ(x) = N22/N27,

which enters through Eqs. (3.11)-(3.14) together with the absolute normalisation of the yield. (ii) with

the stoichiometry ξ(x) and the absolute yield normalisation factor determined from the previous step,

Eq. (3.20) was fit to the measured 22Ne+p yield curve. The resonance strength in 22Ne+p is left as a

free parameter to be extracted from the fit.
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Figure 6.1: Schematic showing the effect of implanting neon ions into an aluminium substrate. Incident protons
with energies Ea are captured by 27Al nuclei in the implanted region, which is close to the surface of the target.
The increased total stopping cross section in this region leads to a decreased yield (Eq. (3.20)). Beams with
energies of Eb react deeper inside the target in a region of pure aluminium. The yield at these energies is higher
compared to the implanted region. Note, however, that for a given incident energy the depth of a reaction
occurring in a region of pure aluminium will be affected by the energy loss (or total stopping power) in the
implanted region.

6.3 Experimental Equipment

6.3.1 Implanted Target

The backing used for the experiment was a 1 mm thick aluminium sheet (99% purity). The

backing was cleaned thoroughly with acetone and ethanol before implantation. The 22Ne ions were

implanted into the backing using the implanter described in Sec. 4.4. The ion implanter accelerated

neon ions from a pressurised natural neon (9.25% ± 0.03% molar fraction of 22Ne) gas bottle to an

energy of 100 keV. The incident dose of 22Ne was estimated by integrating the beam current on the

backing, assuming singly charged incident 22Ne ions. The beam current on the backing amounted

to about 20 µA on average. The total accumulated charge was 0.26 C (corresponding to 1.6 × 1018

incident 22Ne ions) over a circular implantation region of 2.5 cm diameter. A liquid nitrogen cooled

trap reduced contamination buildup (such as carbon and fluorine) on the backing.

6.3.2 Setup

Depth profiling of the implanted aluminium backing was conducted at the Laboratory for Exper-

imental Nuclear Astrophysics (LENA), located at the Triangle Universities Nuclear Laboratory. The

1 MV Van de Graaff accelerator described in Sec. 4.1 was used to accelerate proton beams to energies

in the range of Elab
p = 400−505 keV with a total integrated beam charge on target of ≈ 0.13 C over a
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beam spot of about 1 cm diameter. Secondary electron suppression was applied for the beam current

measurement as shown in Fig. 4.2. In addition, a liquid nitrogen-cooled trap reduced contaminant

buildup on the target surface. The beam current was kept to a minimum (≈ 5 µA) to ensure that the

target did not degrade.

6.3.3 Detector

Capture γ-rays from the excited compound nuclei (28Si and 23Na) were detected using a 135 %

relative efficiency HPGe detector. The detector was located at 55◦ with respect to the beam direction

at a distance of 3.0 cm from the centre of the target. The target and detector were surrounded by at

least 5 cm of lead in all directions to reduce background caused by environmental sources and from

x-rays produced by the accelerator.

The energy signals from the detector were amplified with an Ortec 572 spectroscopy amplifier and

recorded with a CAEN 785 ADC. Detector dead times were monitored with an Ortec 448 precision

pulse generator throughout the experiment and were kept below 3%.

The detector efficiencies, used both for peak intensity normalisation and for summing correc-

tions, were obtained by three methods: radioactive source measurements, resonant (p,γ) reactions,

and Monte-Carlo simulations using Geant4 [Ago03]. First, the Sum-Peak method [Kim03] was used

with 60Co to find the absolute full-energy peak and total efficiencies at Eγ = 1173 and 1332 keV that

do not depend on knowledge of the absolute source activity. Subsequently, other radioactive sources

(56Co, 152Eu) were used to obtain relative full-energy peak efficiencies up to Eγ = 3.5 MeV. The

Elab
r = 278 keV resonance in 14N(p,γ)15O was used to extend the full-energy peak efficiency curve

up to Eγ = 7.5 MeV. It is important to note that because of the close detector geometry, all experimen-

tal full-energy peak efficiencies had to be corrected for coincidence summing effects. The corrections

were performed using the code LENASum [Lon06], which is based on the formulation described in

Ref. [Sem90]. Following the experimental determination of full-energy peak efficiencies, the experi-

mental data points were interpolated using Geant4 simulations. Total detection efficiencies, which

were needed for coincidence summing corrections, were also obtained with Geant4 and normalised

to the 60Co data. More details on detector characterisation can be found in Ch. 4.
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Figure 6.2: Sample γ-ray spectrum, obtained at a beam energy of 490 keV with an accumulated charge of
2 × 10−3 C on target. The target consisted of 22Ne ions implanted into aluminium and thus resonances in
the 27Al(p,γ)28Si and 22Ne(p,γ)23Na reactions were excited simultaneously. Major peaks are labelled by the
decaying nucleus (23Na in blue; 28Si in red), while the label “B” denotes background.

6.4 Procedure and Analysis

6.4.1 Yield Curves

Yield curves were measured simultaneously for the 27Al(p,γ)28Si and 22Ne(p,γ)23Na reactions at

incident proton energies of Elab
p = 400 – 505 keV. A sample γ-ray spectrum, obtained at an incident

beam energy of Elab
r = 490 keV, is shown in Fig. 6.2. The observed in-beam γ-rays arise from the

narrow resonances at Elab
r = 406 keV in 27Al+p and at Elab

r = 479 keV in 22Ne+p .

The 27Al+p resonance has a target spin of j = 5/2 and thus the angular correlation is expected to

be approximately isotropic. Considering, in addition, that the detector was located at θγ = 55◦, where

the Legendre polynomial P2(cos θ) = 0, an angular correlation factor of W27(θ) = 1 can safely be

adopted in Eq. (3.2). Additionally, the 22Ne+p resonance at Elab
r = 479 keV has a spin of j = 1/2

and thus W22(θ) is unity in Eq. (3.2).
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27Al(p,γ)28Si

The Elab
r = 405.5(3) keV resonance (ωγ = 8.63(52)×10−3 eV) [Pow98] was used to measure the

27Al(p,γ)28Si yield curve. Relatively small beam currents (≈ 5 µA) were required to avoid damage to

the target. The resulting low counting statistics for the primary transitions was insufficient for reliable

depth profiling. Thus the much stronger secondary decay from the first excited state (1779 keV→0),

which carries 98% of the decay strength, was used for this purpose. The disadvantage of monitoring

secondary decays in a measurement with an infinitely thick target (i.e., all beam particles stop in the

aluminium) is that lower energy resonances in 27Al+p may contaminate the measured yield. The

Elab
r = 326 keV resonance in 27Al+p resonance (ωγ = 1.8(1) × 10−3 eV [Ili10]) is of particular

importance and had to be accounted for. This was achieved by calculating the expected maximum

yield for an infinitely thick target using Eq. (3.2). The expected contribution to the total 1779 keV→ 0

intensity was then estimated using the branching ratios from Ref. [Ili90] and amounted to about 16%

of the maximum yield. This contribution to the decay strength was subtracted from the measured

intensities. Note that the first data point in the 27Al+p yield curve is consistent with zero, validating

this method of subtracting contamination from other resonances. Another resonance in 27Al+p at

Elab
r = 447 keV (ωγ = 1.50(13)× 10−3 eV [Ili10]) had to be considered as well. To avoid fitting the

cumulative yield from two 27Al+p resonances (Elab
r = 406 keV and Elab

r = 447 keV) simultaneously,

data points near the higher energy resonance from Elab
p = 445 to 475 keV were removed from the

analysis. The expected yield of the Elab
r = 447 keV resonance was then subtracted from data points

above Elab = 475 keV. The resulting yield curve, after these corrections have been applied, is shown

in Fig. 6.3a and will be discussed later.

22Ne(p,γ)23Na

The primary ground state transition of the Elab
r = 479.3(8) keV resonance in 22Ne(p,γ)23Na

[End90] was used to measure the yield curve shown in Fig. 6.3b. The yield was calculated with

Eq. (3.2). For the branching ratio of the ground state transition (9253 keV→ 0) a weighted average

of the literature results which are in mutual agreement (B22 = 0.46 and B22 = 0.48 respectively)

[Mey73, Pii71] was adopted.
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Yield Curve Analysis

The predicted step close to the front edge of the 27Al+p yield curve (Fig. 6.3a), resulting from the
22Ne concentration near the target surface, is clearly observed. The 22Ne+p yield curve (Fig. 6.3b),

on the other hand, shows a smooth peak, consistent with expectations (Sec. 3.2). Deviation from the

expected step shape (Fig. 6.1) in Fig. 6.3a and from a sharp front edge at Elab = 479 keV in Fig.

6.3b is because the 22Ne was not implanted in a uniform layer at the front of the target, but rather in

a varying concentration with depth, as shown in Fig. 6.4. It should be noted that an approximately 40

nm thick layer of aluminium oxide [JJ91] will affect the shape of the yield curve. A SRIM calculation

reveals that the energy loss difference with and without the aluminium oxide layer is less that 0.5

keV and, therefore, outside the resolution of the present experiment. The effect of the oxide layer is

lessened because of the low 22Ne density close to the surface of the aluminium substrate (see Fig.

6.4).

Two codes were written to analyse the yield curves obtained in the experiment. The first code

assumed an implantation profile that varied with depth according to a Gaussian distribution. This

code was used for proof-of-concept purposes since the analytical form required less fitting parameters

and hence less computation time. The second code was written to fit Eq. (3.20) to the measured yield

curves. The least-squares fitting method of McGlone et al. [McG91] was used to determine the depth

profile of 22Ne implanted into Al. The concentration profile of implanted atoms was constrained to

a smoothly varying function by adding corrections to the log–likelihood function. The log-likelihood

function for a profile grid of M slices, which are fit to N data points, is given by,

χ2 = χ2
data +

N+M+1−B
∑

j=N+1

[

Wj−N

B
∑

b=1

N22j−N+b−1Pb

]

(6.1)

where,

χ2
data =

∑

i

(xi − x)2

σ2
i

Here, χ2
data is the log-likelihood function calculated from the deviation of fitted points, x, to experi-

mental points, xi, assuming uncertainties of σi in the data; N22k
denotes the 22Ne ion concentration at

each grid point; B and Pk are fixed parameters for controlling the smoothness of the profile; and Wk
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Figure 6.3: Best fits to the 27Al+p and 22Ne+p yields. (a) Best fit to the Elab
r = 406 keV resonance in

27Al(p,γ)28Si. The absolute yield height has been corrected for other contaminant resonances as discussed in
Sec. 6.4.1. The yield normalisation A in Eq. (6.2) is extracted from the measured yield points above Elab =
480 keV. (b) Best fit to the Elab

r = 479 keV resonance in 22Ne(p,γ)23Na. The absolute height of the yield curve
is left as a free parameter in the fit, which determines the resonance strength. Note that there are more high
energy data points in the 22Ne+p yield curve than in the 27Al+p yield curve. This is because some 27Al+p data
points were removed because of contamination from other resonances (see Sec. 6.4.1). These contaminants do
not affect the 22Ne+p yield.

are weights, which were adjusted manually in order to control the smoothness of the profile. As in

Ref. [McG91], B = 4 and Pb = −1, 3,−3, 1 were chosen to obtain a quadratic smoothness between

every four points with W = 20 1.

The strength of the Elab
r = 479 keV resonance in 22Ne(p,γ)23Na was determined from the follow-

ing procedure (outlined already in Sec. 3.2). Initially, the yield for the 27Al+p reaction was calculated,
1A two-step minimisation was employed to find the best fit depth profile. The Broyden–Fletcher–Goldfarb–Shanno

(BFGS) method [Nas90] was used for the initial parameter search, while the Nelder-Mead gradient based search [Nel65]
was adopted to finely tune the minimisation. Finite difference second derivatives were employed to estimate uncertainties
in the fit parameters.
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Figure 6.4: Stoichiometry profile, ξ(x), of implanted 22Ne ions in the aluminium backing as obtained from a
fit to the 27Al+p yield curve in Fig. 6.3a. The concentration profile simulated with SRIM, which is normalised
to the maximum height of the data points, is shown as a dashed line.

which is given by Eqs. (3.2) and (3.20) as:

Y27(E0) =A

(

1

εp
27Q27

)

rel

e

B27
I27(E0)

=ωγ27
λ2

r

2πσbσs

∑

i

N27i

1
√

xi

∫ E0

E′=0
dE

′

exp

[

−
(E′ − Er)2

2σ2
b

]

exp

[

−
(E0 − E′ − ∆i)2

2σ2
sxi

]

(6.2)

where (εp
27Q27)rel is the product of the relative peak efficiency and relative accumulated charge, and

A denotes their combined absolute normalisation factor. The absolute strength of the Elab
r = 406 keV

resonance is labelled by ωγ27. From the measured 27Al+p yield curve (Fig. 6.3a), the fitting parame-

ters A and ξ(x) (affecting the energy loss ∆i according to Eq. 3.11) were extracted.

The stoichiometry, ξ = N22/N27, as a function of depth that was extracted by fitting the 27Al+p

yield is shown in Fig. 6.4. The stoichiometry profile is overlaid with the simulated profile (dashed line)

of 100 keV 22Ne ions implanted into an aluminium substrate, as obtained from the Monte-Carlo ion

transport code SRIM [Zie04]. There is reasonable agreement between measured and simulated 22Ne

depth profiles. Note that the maximum stoichiometry amounts to a number ratio of Ne : Al= 1 : 2.

Once the stoichiometry profile, ξ, and constant, A, were extracted from the 27Al+p yield curve,
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the 22Ne+p yield curve was fit. The 22Ne+p yield is given by:

Y22(E0) =A

(

e

εp
22B22Q22

)

rel
I22(E0)

=ωγ22
λ2

r

2πσbσs

∑

i

N22i

1
√

xi

∫ E0

E′=0
dE

′

exp

[

−
(E′ − Er)2

2σ2
b

]

exp

[

−
(E0 − E′ − ∆i)2

2σ2
sxi

]

(6.3)

At this stage, the only fitting parameter is the strength of the 22Ne+p resonance, ωγ22. There are

several advantages of using the method outlined above. Firstly, only relative detector efficiencies need

to be known. These relative efficiencies have been shown in Ref. [Car10] to be accurate to within a

few percent. Secondly, only the relative accumulated charge needs to be known. Note that above

Elab = 480 keV the same runs were used to analyse the 22Ne+p and 27Al+p yields, and thus the

beam charge, Q, cancels completely. Fitting Eq. (6.3) to the measured yield shown in Fig. 6.3b gave

the strength of the Elab
r = 479 keV resonance in 22Ne+p , for which a value of ωγ = 0.524(51) eV

was found.

The uncertainty budget for the extracted strength of the Elab
r = 479 keV resonance in 22Ne+p is

presented in Tab. 6.1. The uncertainty in the reference resonance strength (Elab
r = 406 keV in 27Al+p

) is 6% [Pow98]. The Geant4 simulations used to derive relative detector efficiencies are shown to

be accurate to within a few percent for extrapolation in the energy range of Eγ = 4 – 11 MeV [Car10].

Relative uncertainties of 2% were therefore assigned to detection efficiencies. Literature values for the

primary branching ratios in 22Ne+p contribute 5% to the resonance strength uncertainty. Stopping

power uncertainties in the energy regions of interest were estimated from the data compiled on the

SRIM website [Zie04]. The stopping power uncertainties for 27Al+p and 22Ne+p were estimated

to be 4% and 3%, respectively. The stopping powers affect the yield of both 27Al+p and 22Ne+p

yield curves through Eq. (3.11). Since the energy loss enters in the exponential of both Eqs. (6.2) and

(6.3), the importance of the stopping power uncertainties is lessened, resulting in resonance strength

uncertainty contributions of just 2% and 1%, respectively. In addition to uncertainties affecting the

resonance strength, the effect of a different implantation model was investigated. In this model, the

implanted 22Ne atoms replaced aluminium atoms during implantation, resulting in a constant number
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Source Uncertainty in ωγ22 (%)
Reference 27Al+p Strength 6

Relative Efficiencies 2
Branching Ratios 5

Stopping Powers (Al) 2
Stopping Powers (Ne) 1

Fitting 5
Total 10

Table 6.1: Uncertainty budget for the extracted Elab
r = 479 keV resonance strength in 22Ne+p .

density for the implanted material. Equations (3.13) and (3.14) are then replaced by,

ρ27(xi) =ρ27(1 − ξ(x)) (6.4)

ρ22(xi) =ξ(xi)
ρ27M22

M27
(6.5)

This model was found to only affect the width of the extracted profile, while the total number of

implanted nuclei and hence the resonance strength ωγ22 remains approximately constant. All uncer-

tainties were summed in quadrature. The total uncertainty in the extracted Elab
r = 479 keV resonance

strength in 22Ne(p,γ)23Na amounted to 10%.

6.5 Discussion

All previously measured strengths for the Elab
r = 479 keV resonance in 22Ne+p were normalised

relative to higher lying resonances in the 22Ne+p reaction. In the present work, the resonance strength

has been determined independently of other resonances in 22Ne+p, with no dependence on absolute

detector efficiencies or absolute beam charge integration. A comparison of the new result with values

derived from the literature is shown in Fig. 6.5.

The value obtained by Meyer et al. [Mey73] was normalised to the 22Ne+p , Elab
r = 640 keV

resonance strength from Ref. [Du 71]. The rather large uncertainty is dominated by the uncertainty

of that reference resonance. The value of ωγ = 0.45(10) eV (±20%) in Endt [End90], on the other

hand, was obtained by normalising the resonance strengths from Meyer et al. [Mey73] to the absolute

strength of the 22Ne+p Elab
r = 1278 keV resonance reported by Keinonen et al. [Kei77]. Another
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Figure 6.5: Comparison of present result (shown in red) for the Elab
r = 479 keV resonance strength in

22Ne(p,γ)23Na to previously published results. The labels Meyer, Piiparinen, and Endt refer to Refs. [Mey73],
[Pii71], and [End90], respectively.

relative measurement was performed by Piiparinen et al. [Pii71], but unfortunately, no uncertainties

are quoted for the relative yield of the Elab
r = 479 keV resonance. For comparison, a relative yield

uncertainty of 30% was used (by considering their statement that relative yield uncertainties were

between 10% and 50%), and their strength was normalised to the result from Keinonen et al. [Kei77].

As is apparent from Fig. 6.5, the present result has significantly improved the uncertainty of the

Elab
r = 479 keV resonance strength in 22Ne+p , from a previous value near 30% to 10%. The new

technique removes any systematic uncertainty caused by the target stoichiometry, which is difficult to

quantify using traditional methods.

It was already mentioned in the introduction that the new value for the Elab
r = 479 keV resonance

strength in 22Ne+p is important in two respects. Firstly, it will reduce the rate uncertainties of the
22Ne(p,γ)23Na reaction since the strengths of the low-energy resonances can be re-normalised relative

to the present precisely measured strength for Elab
r = 479 keV, and thus improve predictions of hydro-

gen burning nucleosynthesis. Secondly, the present strength can be used to determine more reliable

stoichiometries for implanted 22Ne -Ta targets that have been employed in measurements of the im-

portant 22Ne(α,γ)26Mg and 22Ne(α,n)25Mg s-process neutron source reactions. New thermonuclear

reaction rates for 22Ne+p and 22Ne+α will be published elsewhere.
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6.6 Summary

A novel method for measuring reliable resonance strengths has been employed. By implanting
22Ne ions into a thick aluminium backing, and simultaneously measuring the 22Ne +p and 27Al+p

reactions, the strength of the Elab
r = 479 keV resonance in 22Ne(p,γ)23Na was determined to be

ωγ = 0.524(51) eV. The new formalism allows for finding the implantation profile of 22Ne in a thick

aluminium target backing. This novel approach significantly reduced uncertainties in the desired

resonance strength arising from the cancellation of several systematic experimental uncertainties. The

well known Elab
r = 406 keV resonance in 27Al(p,γ)28Si was used as a reference. The new precise

value for the 22Ne+p resonance strength is important for estimating reliable thermonuclear reaction

rates for the hydrogen burning of 22Ne and for the normalisation of the 22Ne+p s-process reaction

rates.
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7 22Ne+α Rates

7.1 Introduction

NUCLEI heavier than A ≈ 60 can be produced through neutron capture in stars. The s-process is

one mechanism for this production, where the neutron flux is an important factor to the amount

of material that is produced. Consequently, the reaction rates of the neutron producing reactions must

be well known if comparisons between nucleosynthesis models and observations are ever to provide us

with reliable information on the interior structure of stars. For the case of the 22Ne(α,n)25Mg reaction,

its competing reaction 22Ne(α,γ)26Mg also plays an indirect role in the production of neutrons. Both

of these reactions have significant uncertainties at the temperatures of interest in these stars (T ∼

0.1 − 0.3 GK). The effects of these uncertainties have been studied in AGB stars and massive stars

by Pignarari et al. [Pig05] and The et al. [The00], respectively. Both studies find that the current

uncertainties in the 22Ne+α reactions produce variations of up to a factor of 10 in the abundances of

key elements in the s-process.

In the present work, the two 22Ne+α reactions are analysed carefully to find the best estimates

for the current uncertainties in the reactions. Throughout this section, significant problems in the

experimental data will be highlighted as they are encountered. In addition to information from direct

measurements of the reactions, data from α-particle transfer reactions [Gie93, Uga07] and neutron

capture data on 25Mg [Wei76, K0̈2] will be considered. The separation energies from the compound
26Mg nucleus used in the following analysis are Sα = 10614.787(33) keV and Qn = 11093.083(83)

keV.

The derived reaction rates will be compared with previous results. Many different estimates of

the 22Ne+α rates can be found in the literature. Thus to avoid confusion, the present work will



concentrate on reaction rate comparisons to (i) the latest experimental reaction rates (i.e., the latest

studies that presented reaction rates along with a new cross section measurement; and (ii) the NACRE

compiled reaction rates [Ang99]. The reason for this is that most nucleosynthesis modelling codes use

the NACRE rates as input. Note that the reaction rates of Karakas et. al [Kar06] will not be discussed

in the present work because they add little new information.

Throughout this chapter, all energies are presented in the centre-of-mass frame unless otherwise

stated.

7.2 Excited States in 26Mg

In order to take the tails of wide resonances into account at low temperatures, the NACRE compila-

tion [Ang99] used the total width upper limits of the resonances as measured in Refs. [Wol89, Dro93].

In the present analysis, total widths as measured by Refs. [Wei76, K0̈2] are used when available. In

order to integrate wide resonances in the 22Ne(α, γ)26Mg and 22Ne(α, n)25Mg reactions, their cor-

responding excited states in the 26Mg compound nucleus must be identified. In this section, these

identifications will be discussed. Following this identification, the specific cases of each reaction will

be discussed separately.

The directly measured resonance strengths in the 22Ne(α, γ)26Mg reaction are adopted from

Wolke et al. [Wol89]. Direct measurements of resonances in the 22Ne(α,n)25Mg reaction have been

made by Refs. [Wol89, Har91, Dro93, Jae01b]. All of these measurements were made at the same

facility, with variations of the same target and detector system. In the present analysis, it is assumed

that with each subsequent measurement, the techniques were improved upon, so the work of Jaeger et

al. [Jae01b] supersedes the work of all others.

Ex = 11315 keV, Elab
r

= 830 keV

Köhler [K0̈2] argued that this state cannot correspond to the resonances observed by Jaeger et al.

[Jae01b] at Er = 832(2) keV and Wolke et al. [Wol89] at Elab
r = 828(5) keV. He argues that the

value for Γγ would be far too large (assuming Γ reported in [Jae01b] is correct). The calculation is a

119



follows:

ωγαγ = ω
ΓαΓγ

Γα + Γγ + Γn
, ωγαn = ω

ΓαΓn

Γα + Γγ + Γn
(7.1)

where Γα, Γn, and Γγ are the α-particle, neutron, and γ-ray partial widths, respectively; ωγαn and

ωγαγ are the 22Ne(α, n)25Mg and 22Ne(α, γ)26Mg resonance strengths, respectively;and ω is a spin

factor calculated by:

ω =
2J + 1

(2ja + 1)(2jA + 1)
(7.2)

J , ja and jA are the spin of the compound state, the spin of the projectile and the target, respectively.

The ratio of Eqs. (7.1) is:
ωγαγ

ωγαn
=

Γγ

Γn
(7.3)

Therefore, for the state in question,

Γγ = Γn
ωγαγ

ωγαn
= 250(170) ×

3.6(4) × 10−5

1.18(11) × 10−4
= 76(53)eV

The mean value of Γγ in this energy range is reported to be 3 eV [K0̈2], 25 times smaller than that

calculated in Eq (7.1). However, once the rather large uncertainties are considered, it only differs by

1.4σ. Upon inspection of the PhD thesis of Jaeger [Jae01a], it is apparent that the 22Ne(α, γ)26Mg

reaction was measured simultaneously with the 22Ne(α, n)25Mg reaction. In that measurement, a

resonance was found at Er = 833(3) keV in 22Ne(α, γ)26Mg , in very good agreement with the

resonance found at Er = 832(2) keV in the 22Ne(α, n)25Mg reaction. The excitation function fit to

the 22Ne(α, n)25Mg data that produced the total width of Γ = 250(170) eV shows a rather ambiguous

fit, which could easily explain the discrepancy in partial widths discussed above.

Jaeger et al. [Jae01b] assign this state with Jπ = 2+, originating from the assignment made

by Giesen et al. [Gie93]. There are no states observed in other studies in this energy region that

closely match this resonance, but there are several possibilities for which state it could correspond

to: (a) The state at Ex = 11328.2(1) keV with Jπ = 1− and ΓT = 427(86) eV, (b) The state at

Ex = 11310.7(3) keV with Jπ = 1− and ΓT = 4.1(16) eV, (c) The state at Ex = 11286.4(1) keV

with Jπ = 2+ and ΓT = 17.1(61) eV or (d) a state that has not been observed in other works. State

(c) is the only 2+ state in this energy region, but is 16σ outside the energy uncertainties, and 1.5σ
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outside the width uncertainties. Similarly, state (b) is 4σ outside the energy uncertainties and 1.4σ

outside the width uncertainties. State (a) still doesn’t agree in energy, being 5σ outside the uncertainty

(corresponding to 10 keV as mentioned in Ref. [Kar06]), but agrees well in total width (0.9σ).

Following these arguments the resonances are assumed to arise from the same excited state in

the present analysis, and a weighted average between Refs. [Wol89] and [Jae01b] is used for the

resonance energy. Although the DWBA fits from Giesen et al. [Gie93] do not rule out a Jπ = 1−

state, to avoid ambiguities in the state assignments, it will be treated as a new state with resonance

energy Er = 831.9(24) keV, a total with of ΓT = 250(170) eV, and Jπ = 2+ .

Ex = 11440 keV, Elab
r

= 976 keV Resonance

The Elab
r = 976 keV resonance has only been observed in the 22Ne(α, n)25Mg reaction [Jae01b].

There is one excited state in this energy region with similar energy and total width to the observed

resonance at Elab
r = 976 keV. However, the Jπ assignments disagree. Jaeger et al. assume a Jπ = 1−

whereas the assignment from Köhler is Jπ = 4+. The PhD thesis of Jaeger [Jae01a] states that

Jπ = 1− was used if no assignment could been made. Thus, in the present analysis a Jπ = 4+

assignment is assumed for this state. The weighted average of the energy and total width of this

resonance are Ex = 11440.8(2) keV and ΓT = 1475(80) eV, respectively.

Ex = 11461 keV, Er = 1000 keV Resonance

The Elab
r = 1000 keV resonance has only been observed in the 22Ne(α, n)25Mg reaction [Jae01b].

There are two possible states in this energy region that could correspond to the Er = 1000 keV res-

onance (Ex = 11461(2) keV with ΓT = 9300(2500) eV). The first is located at an excitation energy

of Ex = 11457(2) keV and was observed by Ref. [Gla86]. The state was not analysed in their exper-

iment. The other possible state was analysed by Ref. [K0̈2], and is located at an excitation energy

of Ex = 11465.3(2) keV with a total width of ΓT = 6553(90) eV. Once again, this state has been

assigned different quantum numbers by the two studies: Jπ = 5− by Koehler and Jπ = 1− by

Jaeger. As with the Er = 976 keV resonance, the Koehler assignment was adopted in the present

study. The weighted average energy and total width of this resonance are Ex = 11465.2(2) keV and

ΓT = 6554(90) eV, respectively.
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Ex = 11828 keV, Er = 1434 keV

This state most likely corresponds to the resonances observed in the 22Ne(α,n)25Mg data of

Ref. [Jae01b] at 1434(2) keV and in the 22Ne(α, γ)26Mg data of Wolke et al. [Wol89]. The weighted

average resonance energy is therefore Er = 1434(3) keV. Jaeger et al. [Jae01b] measured the total

width of this state to be Γ = 1100(250) eV. At these excitation energies in this mass range, Ref. [K0̈2]

claims that the average γ-ray partial width is 3 eV. The width of this state is therefore most likely due

to the neutron partial width. With an assumed value of Γγ = 3 eV, the α-particle partial width can be

calculated by:

ωγαγ = ω
ΓαΓγ

ΓT
(7.4)

Therefore, Γα =
ωγαγ

ωΓγ
ΓT ≈

ωγαγ

ωΓγ
(Γn + Γγ)

=
2.5 × 10−3

3 × 3
1100 = 1.8(10) × 10−1eV

7.3 The 22Ne(α,γ)26Mg Reaction

Directly Observed Resonances

For resonances with laboratory energies below Elab
r = 1434 keV, the parameters from Sec. 7.2

were used. Resonances strengths and energies above Elab
r = 1434 keV were adopted from Ref.

[Wol89]. For resonances that have an upper limit total width, the calculations were performed as-

suming narrow resonances. The rates for resonances with a measured total width can be integrated

numerically to take their tails into account. Resonances with widths this high above the neutron thresh-

old will be dominated by the neutron partial width, and an average γ-ray partial width of Γγ = 3 eV

is assumed. The α-particle partial width is then calculated using Eq. (7.4).
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Partial Widths (eV)
Ex (keV) Ecm (keV) Elab (keV) Jπ ωγ (eV) Γα Γγ

c Γn ΓT Int
11319 704 831.9(25) 2+ 3.6(4)×10−5 7.20(44)×10−6 3 250 (170) 250 (170) #
11441 826 976.39(23)d 4+ - - - - 1.13(13)×10−5 3 1470 (80) 1470 (80) #
11465 850 1005.23(25)d 5− - - - - 1.60(33)×10−5 3 6550 (90) 6550 (90) #
11508 893 1055.9(11)d 1− - - - - 1.17(20)×10−4 3 1.27 (25)×104 1.27 (25)×104 #
11526 911 1077(2)d 1− - - - - 2.77(23)×10−4 3 1.8 (9)×103 1.8 (9)×103 #
11630 1015 1200(2)d 1− - - - - 2.83(33)×10−3 3 1.35 (17)×104 1.35 (17)×104 #
11748 1134 1340(10)d 1− - - - - 2.0(3)×10−2 3 6.35 (85)×104 6.35 (85)×104 #
11787 1172 1385(4)d 1− - - - - 1.67(23)×10−2 3 2.45 (24)×104 2.45 (24)×104 #
11828 1213 1434(3) 2+ 2.5(3)×10−4 1.84(10)×10−1 3 1100 (250)b 1100 (250)b #
11895 1280 1513(5) 1− a 2.0(2)×10−3 8.9(45)×10−1 3 - - - - < 3000
11912 1297 1533(3) 1− a 3.4(4)×10−3 1.89(79)×10+0 3 5 (2)×103 5 (2)×103 #
11953 1338 1582(3) 3− a 3.4(4)×10−3 6.5(33)×10−1 3 2 (1)×103 2 (1)×103 #
12051 1437 1698(3) 3− a 6.0(7)×10−3 8.6(58)×10−1 3 4 (2)×103 4 (2)×103 #
12139 1525 1802(3) 1− a 1.0(2)×10−3 1.67(40)×10+0 3 15 (3)×103 15 (3)×103 #
12184 1569 1855(8) (0+) 1.1(2)×10−3 1.21(29)×10+1 3 33 (5)×103 33 (5)×103 #
12273 1658 1960(8) (0+) 8.9(1)×10−3 1.63(35)×10+2 3 73 (9)×103 73 (9)×103 #
12343 1728 2043(5) 0+ 5.4(7)×10−2 6.3(12)×10+2 3 35 (5)×103 35 (5)×103 #

Table 7.1: Directly measured resonances in the 22Ne(α,γ)26Mg reaction. Total partial widths are from Ref.
[Wol89] unless stated otherwise.
a Jπ from Ref. [Har91]
b From Ref. [K0̈2]
c See text for details
d Γα from 22Ne(α,n)25Mg measurements

7.3.1 Upper Limit Resonances

States With Measured Partial Widths

For resonances with one or more measured partial widths and are located below Er = 1005 keV,

their neutron and γ-ray partial widths have been measured by R-matrix analysis of neutron capture

data [K0̈2]. For each of these states, measured partial widths are adopted from Ref. [K0̈2] and upper

limits for ωγαγ are taken from Fig. 7 in Ref. [Wol89]. That figure displays the reaction cross sec-

tion, assuming broad resonances (the resonance width is much larger than the target width), so the

resonance strength is given by (see Sec. 2.1.2),

ωγ =
πΓT

λ2
σ (7.5)

By using the resonance at Er = 1434 keV as a reference, the upper limit resonance strengths can be

found from the known widths and upper limit cross sections. See Appendix B.2 for more details on

the calculation of these upper limits. The α-particle partial width at these energies is several orders
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of magnitude smaller than the total width. Thus the width will either be dominated by the neutron

partial width or the γ-ray partial width. In the former case, numerical integration of the rate can be

performed by assuming an average γ-ray partial width of Γγ = 3 eV (see Sec. 7.2). In the latter case,

the resonance cannot be safely integrated, so a narrow resonance is assumed. The α-particle partial

width can be calculated following the same procedure as in Sec. 7.2.

States Without Measured Partial Widths

These states, mostly above Er = 883 keV, have been observed in the 25Mg(n,γ)26Mg data of

Weigmann et al. [Wei76] and in 23Na(α,pγ)26Mg measurements by Glatz et al. [Gla86]. In both

of these cases the resonance parameters were not measured. In this situation, it is not practical to

use upper limits or average values for all of the partial widths. Consequently, such states have been

omitted in the present calculations. Fortunately, all but one of these levels occur at high energies,

where the directly observed resonances will dominate the total reaction rate.

Partial Widths (eV)
Ex (keV) Ecm (keV) Elab (keV) Jπ ωγUL (eV) Γα,UL Γγ Γn ΓT Int

11112 497 587.90(10) 2+ 3.8×10−08 7.7×10−09 1.732(31) 2578(180)) 2580(24) #
11163 548 647.93(11) 2+ 4.3×10−07 8.7×10−08 4.56(29) 4644(100) 4649(100) #
11171 556 657.53(19) (2+) 6.2×10−07 1.2×10−07 3 1.44(16) 4.4(15)
11183 568 671.70(21) (1−) 1.0×10−06 2.0×10−07 3 0.540(88) 3.5(15)
11243 628 742.81(12) 2(−) 4.7×10−06 9.4×10−07 7.42(60) 4511(107) 4518(110) #
11274 659 779.32(14) (2)+ 4.9×10−06 9.9×10−07 3.24(35) 540(54) 543(54) #

11280 665 786.17(13) 4(−) 8.2×10−07 9.1×10−08 0.59(24) 1513(34) 1514(34) #
11286 671 792.90(15) 1− 5.0×10−06 1.6×10−06 0.79(46) 1256(100) 1260(100) #
11286 672 793.83(14) (2+) 5.0×10−06 1.0×10−06 4.26(60) 12.80(60) 17.1(60) #
11289 674 797.10(29) (2−) 5.1×10−06 1.0×10−06 3 1.54(46) 4.5(16)
11296 681 805.19(16) (3−) 5.1×10−06 7.3×10−07 3.31(73) 8060(120) 8060(120) #
11311 696 822.62(41) (1−) 5.2×10−06 1.7×10−06 3 1.12(40) 4.1(16)
11326 711 840.81(63) (1−) 5.4×10−06 1.8×10−06 3 0.60(32) 3.6(15)
11328 713 843.24(17) 1− 5.4×10−06 1.8×10−06 3.63(47) 424(86) 428(86) #
11329 714 844.35(64) (1−) 5.4×10−06 1.8×10−06 3 2.8(10) 5.8(18)
11337 722 853.55(67) (1−) 5.4×10−06 1.8×10−06 3 1.42(56) 4.4(18)
11344 729 861.86(18) (2+) 5.5×10−06 1.1×10−06 1.18(27) 153(42) 154(42) #

11345 730 862.91(19) 4(−) 5.5×10−06 6.1×10−07 1.82(38) 4130(190) 4130(190) #

11393 778 919.34(19) 5(+) 1.6×10−06 1.5×10−07 3 290(19) 293(19) #
11441 826 976.40(23) 4+ 6.2×10−06 2.0×10−06 3 1470(80) 1473(80) #
11465 851 1005.30(25) 5− 6.4×10−06 5.8×10−07 3 6550(90) 6553(90) #

Table 7.2: Upper limit resonances in the 22Ne(α,γ)26Mg reaction; γ-ray and neutron partial widths are taken
from the R-matrix fit of Ref. [K0̈2].
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7.3.2 Transfer Measurements

Indirect α-particle transfer measurements have been performed below the neutron threshold by

Giesen et al. [Gie93] and Ugalde at al. [Uga07]. In both of these measurements, a 6Li beam was

incident on a 22Ne target to populate states in 26Mg. The deuteron momentum was subsequently

measured to obtain the 26Mg excitation energy.

Between the α-particle threshold at Sα = 10615 keV and the excitation energy of the lowest mea-

sured resonance by Ref. [Wol89] at Ex = 12346 keV, Ref. [Gie93] observed two α-particle clusters

at Ex = 10694(20) keV and Ex = 10949(20) keV. The first state is assumed to be the same one as

that measured in Refs. [Gla86, Mos76] and the weighted average of these excitation energies will be

used. Ugalde et al. suggest that this state is most likely a 4+ state as it has been observed by Ref.

[Gla86] to decay to the 5+ state at Ex = 7395(1) keV.

The second state measured by Ref. [Gie93] has also been resolved into two separate states by Ref.

[Uga07] at the excitation energies of Ex = 10808(20) keV and Ex = 10953(25) keV. For this state,

the work of Ugalde et al. [Uga07] is assumed to supersede that of Giesen et al. [Gie93]. These states

most closely agree with those of Walkiewicz et al. [Wal92] at Ex = 10805.9(4) keV and those seen

by Refs. [Gla86, Mos76] at Ex = 10943(2) keV and Ex = 10950(3) keV respectively. The weighted

averages of these energies have been used in our analysis.

These measurements yield spectroscopic factors, which are obtained through DWBA fitting of an-

gular distributions of the data. The work of Ref. [Uga07] did not deduce angular distributions. Thus

their spectroscopic factors for the observed states were estimated by normalising to the state observed

by Ref. [Gie93] at Ex = 10949(25) keV. Their analysis consisted of taking the area of the peak ob-

served by Ref. [Gie93] and splitting it into two parts corresponding to the areas of the newly observed

peaks. The results of that analysis are shown in Tab. 7.3. In the present work, the spectroscopic factors

from Ugalde et al. will be treated as upper limits because the ambiguities associated with estimating

spectroscopic factors in this way. The larger of the three values calculated in Tab. 7.3 were used for

the upper limits.

125



Partial widths can be calculated from the spectroscopic factors by

Γα =
2!2

µR2
PC2Sα (7.6)

where P is the penetration factor; C is the isospin Clebsch-Gordan coefficient; R is the nuclear radius

calculated from R = R0(A
1/3
t + A1/3

α ), where R0 = 1.25 fm and At is the target nucleon number

(At = 22); µ is the reduced mass and Sα is the measured spectroscopic factor.

7.3.3 Quantum Number Measurements at HIγS

Measurements of 26Mg(γ,γ′)26Mg are discussed in Chapter 5. The assignments, and how they

affect the reaction rate calculations are discussed below:

Ex = 10647.3(8) keV, Jπ = 1+

This state is a well known Jπ = 1+ state [End90]. The present result reduces the uncertainties in

resonance energy considerably. However, the close proximity of this state to the α-particle threshold

means that its influence on the on the 22Ne+α reaction rates is low.

Ex = 10805.7(7) keV, Jπ = 1−

This state was seen previously in 22Ne(6Li,d)26Mg measurements by Ugalde et al. [Uga07] at

Ex = 10808(20) keV, and in 25Mg(nt,γ)26Mg measurements (thermal neutron capture) by Walkie-

wicz et al. [Wal92] at Ex = 10805.9(4) keV. The previous measurements assigned Jπ = (0+ − 4+),

while the present result shows it to have Jπ = 1−. This unambiguous quantum number assignment is

expected to reduce the reaction rate uncertainties arising from this state significantly.

Ex = 10949.1(8) keV, Jπ = 1−

This state has been observed previously in 26Mg(p,p′)26Mg measurements by Moss et al. [Mos76]

at Ex = 10950(3) keV. It was also observed in 22Ne(6Li,d)26Mg transfer measurements by Ugalde et

al. [Uga07] at Ex = 10953(25) keV. The latter measurements could only assign the state with natural

parity, although the (p,p′) measurements suggest a Jπ = 1− state, which agrees with the present
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result. One important point to note is that Ugalde et al. assumed this state is the same one as that

observed in the 23Na(α,pγ)26Mg measurements by Glatz et al. [Gla86] at Ex = 10943(2) keV with

Jπ = (4± − 7±). With no further information, it is impossible to know which state was observed

by Ugalde et al. [Uga07]. Consequently, in the present analysis, the spectroscopic factor that was

measured by Ugalde et al. is treated as an upper limit, and the same upper limit was used for both

states. This is shown is Tab. 7.3.

Ex = 11153.5(10) keV, Jπ = 1+

This state corresponds to the presumed astrophysically important 630 keV resonance [Dro91,

Dro93, Jae01b, Gie93]. The results in chapter 5 show that the state can be assigned with a definite spin-

parity of Jπ = 1+. This unnatural parity state cannot be formed by an α-particle and 22Ne without

breaking angular momentum conservation laws, and therefore, cannot contribute to the reaction rate.

A previous assignment by Koehler [K0̈2] of Jπ = 1− was motivated by erroneous results (background

from 11B) in Ref. [Har91], although it could not be assigned without ambiguity.

Partial Widths (eV)
Ex (keV) Ecm (keV) Elab (keV) Jπ Sα Γα Γγ

a ΓT

10693 (2) 79 93 (2) 4+ 2.4×10−2 1.5(12) × 10−46 3 3
10805.7 (7) 191 225.9 (5) 1− 1.9×10−2 1.25 × 10−23 3 3
10945 (2) 331 391 (2) (5− − 7−) 2.8×10−3 < 370(180) × 10−27 3 3

10949.1 (8) 334 395.15 (18) 1− 2.8×10−3 < 1.20 × 10−9 3 3

Table 7.3: Resonance parameters for states observed in 22Ne(6Li,d)26Mg. These results include the additional
quantum number assignments from chapter 5.
a Assumed average γ-ray partial width (see Sec. 7.2)

7.3.4 Normalisation of Hauser-Feshbach Reaction Rates at Higher Temperatures

Theoretical Hauser-Feshbach reaction rates are needed at higher temperatures because resonances

are only measured up to a finite energy, Eexp
max. If the effective burning window extends above this

energy, the rate will not accurately reflect reality. Statistical techniques must, therefore, be used to

calculate a theoretical reaction rate above this temperature. The method used is described in detail in

Ref. [New08]. The method uses the following strategy: (i) an effective thermonuclear energy range
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is defined using the 8th, 50th, and 92nd percentiles of the fractional reaction rate contributions at each

temperature (i.e., the reaction rate arising from a single reonance at temperature, T divided by the

total reaction rate at T ); (ii) the temperature, T ETER
match , at which Hauser-Feshbach reaction rates will be

adopted is calculated by

E(T ETER
match ) + ∆E(T ETER

match ) = Eexp
max (7.7)

where ∆E(T ETER
match ) is the width of the ETER calculated from the 8th and 92nd rate percentiles. At

this point, Hauser-Feshbach reaction rates are normalised to the experimentally determined rates, and

extrapolated to higher temperatures. The matching temperature for the 22Ne(α, γ)26Mg reaction is

calculated to be T = 1.33 GK.

7.3.5 Results

The input file used to calculate the 22Ne(α, γ)26Mg reaction rate with the RatesMC code is

shown in Fig. 7.1. The reaction rates parameters discussed in Sec. 2.2.3 are tabulated in Tab. 7.4

at a range of temperatures from T = 0.01 to 10 GK. The low and high rates should be interpreted

as the 0.16 and 0.84 quantiles of the reaction rate distributions. Also tabulated are the lognormal

parameters needed to describe the reaction rate probability density function, where µ and σ represent

the lognormal parameters of the distribution. A quantitative measure for the agreement between the

theoretical lognormal shape and the actual reaction rate distribution is presented in the final column,

A-D. A value of A−D > 30 means that the lognormal approximation is considered to deviate visibly

from the actual distribution. The reaction rate distributions for six sample temperatures are shown in

Fig. 7.2. Note that the reaction rate is dominated by upper limits in resonances below T ≈ 0.1 GK,

giving rise to reaction rate distributions that resemble chi-squared distributions (Appendix. A).

The uncertainty bands in Tab. 7.4 are shown in the upper panel of Fig. 7.3 as solid lines. The dash-

ed lines represent the uncertainty bands of the previous reaction rate compilation (NACRE [Ang99]).

The lower panel plots the ratio of the present results to the NACRE rates. The present results deviate

significantly from the literature reaction rates. This deviation is mostly because of the treatment

of upper limits by using a Porter-Thomas probability distribution in the present work. The literature

followed the procedure discussed in Sec. 2.2. Another explanation for the large discrepancy in reaction
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Figure 7.1: RatesMC input file for 22Ne(α,γ)26Mg reaction rates.
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T (GK) Low rate Median rate High rate lognormal µ lognormal σ A-D
0.010 3.26×10−78 7.98×10−78 1.93×10−77 -1.775×10+02 8.89×10−01 4.15×10−01

0.011 1.24×10−74 2.74×10−74 6.02×10−74 -1.694×10+02 7.94×10−01 3.55×10−01

0.012 1.11×10−71 2.34×10−71 4.93×10−71 -1.626×10+02 7.38×10−01 2.91×10−01

0.013 3.47×10−69 7.08×10−69 1.45×10−68 -1.569×10+02 7.12×10−01 3.16×10−01

0.014 4.66×10−67 9.43×10−67 1.91×10−66 -1.520×10+02 7.06×10−01 2.93×10−01

0.015 3.18×10−65 6.48×10−65 1.32×10−64 -1.478×10+02 7.14×10−01 3.59×10−01

0.016 1.25×10−63 2.61×10−63 5.39×10−63 -1.441×10+02 7.31×10−01 3.43×10−01

0.018 5.54×10−61 1.21×10−60 2.64×10−60 -1.380×10+02 7.77×10−01 2.38×10−01

0.020 7.04×10−59 1.63×10−58 3.72×10−58 -1.331×10+02 8.27×10−01 2.56×10−01

0.025 6.11×10−55 1.28×10−54 2.93×10−54 -1.241×10+02 7.94×10−01 1.83×10+00

0.030 2.16×10−50 2.17×10−49 7.94×10−49 -1.125×10+02 1.79×10+00 1.22×10+02

0.040 1.41×10−42 1.49×10−41 5.46×10−41 -9.454×10+01 2.04×10+00 1.60×10+02

0.050 6.58×10−38 6.98×10−37 2.56×10−36 -8.379×10+01 2.05×10+00 1.61×10+02

0.060 8.28×10−35 8.62×10−34 3.16×10−33 -7.662×10+01 1.91×10+00 1.39×10+02

0.070 2.64×10−32 1.49×10−31 5.05×10−31 -7.125×10+01 1.49×10+00 7.29×10+01

0.080 4.50×10−30 1.63×10−29 3.76×10−29 -6.652×10+01 1.20×10+00 8.01×10+01

0.090 2.54×10−28 1.16×10−27 4.41×10−27 -6.214×10+01 1.46×10+00 2.11×10+01

0.100 7.38×10−27 6.43×10−26 2.71×10−25 -5.830×10+01 1.75×10+00 4.59×10+01

0.110 1.76×10−25 1.84×10−24 7.94×10−24 -5.503×10+01 1.93×10+00 7.43×10+01

0.120 2.80×10−24 3.05×10−23 1.32×10−22 -5.226×10+01 1.99×10+00 8.68×10+01

0.130 3.06×10−23 3.26×10−22 1.41×10−21 -4.986×10+01 1.93×10+00 7.67×10+01

0.140 2.66×10−22 2.50×10−21 1.06×10−20 -4.774×10+01 1.77×10+00 5.20×10+01

0.150 2.39×10−21 1.52×10−20 6.15×10−20 -4.583×10+01 1.56×10+00 2.69×10+01

0.160 1.89×10−20 8.09×10−20 2.89×10−19 -4.406×10+01 1.34×10+00 1.23×10+01

0.180 7.20×10−19 2.08×10−18 5.14×10−18 -4.081×10+01 9.99×10−01 1.81×10+01

0.200 1.56×10−17 3.98×10−17 8.78×10−17 -3.782×10+01 8.62×10−01 9.51×10+00

0.250 9.78×10−15 1.94×10−14 4.22×10−14 -3.154×10+01 7.15×10−01 3.69×10+00

0.300 1.14×10−12 1.96×10−12 3.44×10−12 -2.695×10+01 5.54×10−01 5.65×10−01

0.350 3.65×10−11 5.92×10−11 9.26×10−11 -2.357×10+01 4.74×10−01 5.04×10+00

0.400 4.89×10−10 7.88×10−10 1.18×10−09 -2.100×10+01 4.45×10−01 1.38×10+01

0.450 3.72×10−09 5.95×10−09 8.73×10−09 -1.898×10+01 4.36×10−01 1.92×10+01

0.500 1.89×10−08 3.00×10−08 4.38×10−08 -1.737×10+01 4.34×10−01 2.15×10+01

0.600 2.21×10−07 3.46×10−07 4.98×10−07 -1.492×10+01 4.17×10−01 2.06×10+01

0.700 1.49×10−06 2.21×10−06 3.04×10−06 -1.306×10+01 3.63×10−01 1.58×10+01

0.800 7.75×10−06 1.07×10−05 1.43×10−05 -1.146×10+01 3.06×10−01 6.45×10+00

0.900 3.34×10−05 4.41×10−05 5.84×10−05 -1.002×10+01 2.92×10−01 2.01×10+00

1.000 1.19×10−04 1.56×10−04 2.14×10−04 -8.742×10+00 3.04×10−01 9.64×10+00

1.250 1.45×10−03 1.92×10−03 2.73×10−03 -6.229×10+00 3.23×10−01 1.33×10+01

1.500 (9.69×10−03) (1.34×10−02) (1.85×10−02) (-4.314×10+00) (3.22×10−01)
1.750 (5.05×10−02) (6.96×10−02) (9.61×10−02) (-2.664×10+00) (3.22×10−01)
2.000 (2.01×10−01) (2.77×10−01) (3.83×10−01) (-1.283×10+00) (3.22×10−01)
2.500 (1.71×10+00) (2.36×10+00) (3.25×10+00) (8.570×10−01) (3.22×10−01)
3.000 (8.30×10+00) (1.15×10+01) (1.58×10+01) (2.439×10+00) (3.22×10−01)
3.500 (2.80×10+01) (3.87×10+01) (5.34×10+01) (3.655×10+00) (3.22×10−01)
4.000 (7.38×10+01) (1.02×10+02) (1.41×10+02) (4.623×10+00) (3.22×10−01)
5.000 (3.15×10+02) (4.35×10+02) (6.01×10+02) (6.076×10+00) (3.22×10−01)
6.000 (8.91×10+02) (1.23×10+03) (1.70×10+03) (7.115×10+00) (3.22×10−01)
7.000 (1.95×10+03) (2.69×10+03) (3.71×10+03) (7.896×10+00) (3.22×10−01)
8.000 (3.59×10+03) (4.95×10+03) (6.83×10+03) (8.508×10+00) (3.22×10−01)
9.000 (5.82×10+03) (8.03×10+03) (1.11×10+04) (8.991×10+00) (3.22×10−01)
10.000 (8.68×10+03) (1.20×10+04) (1.65×10+04) (9.391×10+00) (3.22×10−01)

Table 7.4: Monte Carlo reaction rates for the 22Ne(α,γ)26Mg reaction. Numbers in parentheses indicate rates
that have been normalised to Hauser-Feshbach rates from Ref. [Rau01].
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Figure 7.2: Reaction rate probability densities for the 22Ne(α,γ)26Mg reaction. Shown are histograms of the
reaction rates and the associated lognormal function used to approximate the rates.
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rates between the present results and the NACRE rates could be their treatment of resonance widths.

In the NACRE rate calculation, the cross sections were integrated assuming wide resonances by using

upper limit total widths (Γ = 4 − 10 keV) that are considerably larger than the widths used in the

present analysis.

Several studies of the compound nucleus 26Mg have been performed since the NACRE rates were

published. Directly measured 22Ne(α, n)25Mg measurements [Jae01b] and an R-matrix analysis of
25Mg(n,γ)26Mg [K0̈2] have provided improved estimates for the parameters of excited states. A

comparison of the reaction rates before and after the measurement described in Ch. 5 is shown in Fig.

7.4.

The upper panel in Fig. 7.4 shows clearly that the reaction rate uncertainties have been reduced

significantly between T = 0.03 and 0.1 GK. This is because of the unique quantum number assign-

ment for the excited state at Ex = 10805 keV (Sec. 5.4.3). The lower panel shows a sharp peak in

the reaction rate ratio, corresponding to a rate approximately 1000 times larger at T = 0.1 GK. This

spike results from the spin-parity assignment of Jπ = 1− to the excited state at Ex = 10949 keV.

This state was previously believed to have a spin of J = 4 − 7. In the present analysis, this state

was split into a doublet, and each was assigned an upper limit spectroscopic factor that was measured

by Ref. [Uga07]. The lack of resonance information in this energy region means that an upper limit

partial width will have a significant effect on the reaction rates.

7.3.6 Influence of 832 keV Resonance Assignments

The resonance at Elab
r = 832 keV was assumed to correspond to the same state as the resonance

measured in 22Ne(α,n)25Mg [Wol89, Dro93, Jae01b]. This state has been assumed to be a Jπ = 2+

state. The other possibility is that these two states are, indeed, distinct as suggested by Ref. [K0̈2].

Figure 7.5 shows the effect of separating this resonance into two levels on the 22Ne(α,γ)25Mg

reaction rate. In separating this state, the only known level that is close in energy is located at Ex =

11310.50(49) keV (compared with Ex = 11315(5) measured by Wolke). This state has Jπ = 1−

(a spin assignment couldn’t be made by Wolke et al. [Wol89]), which results in a higher reaction

rate for the separate state assumption. See Sec. 7.2 for more discussion on the procedure used in the

present study. The difference between the rather arbitrary choice of assignments clearly shows that
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Figure 7.3: The uncertainty bands for the 22Ne(α,γ)26Mg reaction. The largest uncertainties are caused by
upper limit resonances, and uncertainties in the strengths of the lower measured resonances. The lower panel is
a comparison to the NACRE rates. In the upper figure, the solid lines represent the present high and low reaction
rates normalised to the recommended rate. The dashed lines represent the literature upper and lower reaction
rates normalised to the literature recommended rate. In the lower panel, the present results are normalised to
the literature rates (the thick line represents the recommended rate and the thinner lines show the high and low
rates). Points below unity show that the present rates are lower than the literature rates.
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Figure 7.4: Comparison of the present results to the reaction rates calculated prior to the measurements in Ch.
5. See Fig. 7.3 for a description of the plot.
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the parameters of these resonances must be measured carefully for both the 22Ne(α, γ)26Mg and the
22Ne(α, n)25Mg reactions to resolve this issue.

7.4 The 22Ne(α,n)26Mg Reaction

The 22Ne(α, n)25Mg reaction is the s-process neutron source thought to be active in AGB stars

and during the helium burning stage of massive stars. It has been studied more extensively than

the competing 22Ne(α,γ)26Mg reaction. The lowest measured resonance is located at Er = 832 keV

[Jae01b], at the upper edge of the Gamow peak (for T = 0.3 GK, the Gamow peak is located at E0 =

600 keV with ∆E = 290 keV). A resonance was thought to have been observed at Er = 633 keV,

but was later found to be caused by background from 10B [Dro93], and gave rise to some controversy

[Jae01b, Gie93, Uga07]. Significant rate uncertainties still exist in this reaction as outlined in the

following analysis.

7.4.1 Directly Measured Resonances

Resonance parameters below Elab
r = 1434 keV were adopted according to the discussion in Sec.

7.2. Above the highest energy measured resonance of Ref. [Jae01b] at Er = 1434(2) keV, the work of

Drotleff et al. [Dro93] is used for resonances in the 22Ne(α, n)25Mg reaction from Er = 1475(3) keV

to Er = 2289(15) keV. No normalisation in the studies is performed in the present analysis because

the few resonances that coincide between the studies did not have a consistent magnitude shift and

any normalisation would therefore be arbitrary.

Er > 1000 keV Resonances

Excited states above Ex = 11465 keV have not been analysed by any other experiments. For

these resonances, the energy and total width of Ref. [Jae01b] have been used. In order to numerically

integrate the cross sections of these resonances, the α-particle, γ-ray and neutron partial widths must

be known. For the γ-ray partial width, an average of Γγ = 3 eV is used. Note that if ωγ is small

compared to the width of the resonance, at these energies the neutron partial width will dominate the
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Figure 7.5: The effect on the reaction rate of separating the 832 keV resonance into two states as discussed in
the text. The top panel shows that the uncertainty bands remain approximately constant between the two calcu-
lations (solid lines correspond to the single state assumption). The lower panel shows the ratio of recommended
reaction rates for the single state assumption and that of the doublet. A ratio larger than unity means that the
single state assumption produces a larger rate. The lower panel shows a significantly lower reaction rate for the
single state assumption between T = 0.2 and 1.0 GK.
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total width of the resonance. Thus, the α-particle partial width is calculated as follows.

ωγ =ω
ΓαΓn

Γα + Γn + Γγ
(7.8)

≈ω
ΓαΓn

Γn

ωγ ≈ωΓα (7.9)

As the resonance strength becomes comparable to the total width of the resonance, this approximation

is not valid because Γα ∼ Γn, and the resonance cross section cannot be integrated numerically.

Partial Widths (eV)
Ex (keV) Ecm (keV) Elab (keV)a Jπ ωγ (eV)a Γα

b Γγ
e Γn

c ΓT Int
11319 704 831.9(24) 2+ 1.18(11)×10−4 2.36(22)×10−5 3 250 (170) 250 (170) #

11441 826 976.39(23) 4+ 3.4(4)×10−5 1.13(13)×10−5 3 1.475 (80)×103 1.475 (80)×103 #

11465 850 1005.23(25) 5− 4.8(10)×10−5 1.60(33)×10−5 3 6.554 (90)×103 6.554 (90)×103 #

11506 891 1053(2) 1− 3.5(6)×10−4 1.17(20)×10−4 3 1.27 (25)×104 1.27 (25)×104 #

11526 911 1077(2) 1− 8.3(7)×10−4 2.77(23)×10−4 3 1.8 (9)×103 1.8 (9)×103 #

11630 1015 1200(2) 1− 8.5(10)×10−3 2.83(33)×10−3 3 1.35 (17)×104 1.35 (17)×104 #

11748 1134 1340(10) 1− 6.0(9)×10−2 2.00(30)×10−2 3 6.35 (85)×104 6.35 (85)×104 #

11787 1172 1385(4) 1− 5.0(7)×10−2 1.67(23)×10−2 3 2.45 (34)×104 2.45 (34)×104 #

11828 1213 1434(3) 2+ 1.067(42)×10+0 2.134(84)×10−1 3 1.10 (25)×103 1.10 (25)×103 #

11863 1248 1475(3) 1− 4.5(30)×10+1 4.5(30)×10+1 3 1.4 (5)×104 1.4 (5)×104 #

11880 1265 1495(3) 1− 3.88(57)×10+2 - - - - 3 - - - - - - - -
11891 1276 1508(3) 1− 5.60(60)×10+2 - - - - 3 - - - - - - - -
11910 1295 1531(3) 1−, 2+ d 1.445(160)×10+3 - - - - 3 - - - - - - - -
11951 1337 1580(3) 2+, 3−, 4+d 2.90(30)×10+3 - - - - 3 - - - - - - - -
12052 1437 1699(3) 2+, 3−d 6.035(770)×10+3 - - - - 3 - - - - - - - -
12115 1500 1773(5) 1− 1.00(24)×10+3 - - - - 3 - - - - - - - -
12141 1526 1804(3) 1− 3.010(335)×10+3 - - - - 3 - - - - - - - -
12184 1569 1855(8) (0+)d 8.95(210)×10+2 - - - - 3 - - - - - - - -
12265 1650 1950(10) (0+)d 3.10(85)×10+4 - - - - 3 - - - - - - - -
12346 1731 2046(8) 0+d 1.97(33)×10+5 - - - - 3 - - - - - - - -
12435 1821 2152(10) 1− 2.76(70)×10+4 - - - - 3 - - - - - - - -
12551 1937 2289(15) 1− 1.21(45)×10+5 - - - - 3 - - - - - - - -

Table 7.5: Directly measured resonances in the 22Ne(α,n)25Mg reaction.
aSee text for details.
bCalculated using Eq. (7.9).
cAssuming ΓT is dominated by Γn.
dFrom Ref. [Wol89].
eSee text for details.

7.4.2 Upper Limit Resonances

The resonance strength upper limits of resonances in the 22Ne(α,n)25Mg reaction have been cal-

culated in a similar way to those in the 22Ne(α,γ)26Mg case (Section 7.3.1). In this case, Fig. 1 of
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Ref. [Jae01b] was used to extract the upper limits from the measured yield.

In addition to this method, the PhD thesis of Jaeger [Jae01a] contains calculated upper limits. This

method is preferable to the methods above as they do not rely on reading yield values off a graph.

Partial Widths (eV)
Ex (keV) Ecm (keV) Ecm (keV)a Jπ ωγUL (eV) Γα,UL Γn Γγ ΓT Int

11112 497 587.90(10) 2+ 5.8×10−8 7.7×10−9 2578(180)) 1.732(31) 2580(24) #
11163 548 647.93(11) 2+ 1.9×10−7 3.8×10−8 4644(100) 4.56(29) 4649(100) #
11171 556 657.53(19) (2+) 7.5×10−8 1.5×10−8 1.44(16) 3 4.4(15)
11183 568 671.70(21) (1−) 7.7×10−5 2.1×10−7 0.540(88) 3 3.5(15)
11243 628 742.81(12) 2(−) 1.2×10−7 2.4×10−8 4511(107) 7.42(60) 4518(110) #
11274 659 779.32(14) (2)+ 1.1×10−7 2.2×10−8 540(54) 3.24(35) 543(54) #

11280 665 786.17(13) 4(−) 1.3×10−7 1.4×10−8 1513(34) 0.59(24) 1514(34) #
11286 671 792.90(15) 1− 7.7×10−8 2.6×10−8 1256(100) 0.79(46) 1260(100) #
11286 672 793.83(14) (2+) 7.7×10−8 1.5×10−8 12.80(60) 4.26(60) 17.1(60) #
11289 674 797.10(29) (2−) 7.7×10−8 1.5×10−8 1.54(46) 3 4.5(16)
11296 681 805.19(16) (3−) 1.0×10−7 1.4×10−8 8060(120) 3.31(73) 8060(120) #
11311 696 822.62(41) (1−) 1.6×10−8 5.3×10−9 1.12(40) 3 4.1(16)
11326 711 840.81(63) (1−) 1.2×10−7 4.1×10−8 0.60(32) 3 3.6(15)
11328 713 843.24(17) 1− 5.0×10−7 1.7×10−7 424(86) 3.63(47) 428(86) #
11329 714 844.35(64) (1−) 1.2×10−7 4.1×10−8 2.8(10) 3 5.8(18)
11337 722 853.55(67) (1−) 1.3×10−7 4.2×10−8 1.42(56) 3 4.4(18)
11344 729 861.86(18) (2+) 2.0×10−7 4.0×10−8 153(42) 1.18(27) 154(42) #

11345 730 862.91(19) 4(−) 4.2×10−8 4.7×10−9 4130(190) 1.82(38) 4130(190) #

11393 778 919.34(19) 5(+) 3.7×10−8 3.3×10−9 290(19) 3 293(19) #

Table 7.6: Upper limit resonances in the 22Ne(α,n)25Mg reaction; γ-ray and neutron partial widths are taken
from the R-matrix fit of Ref. [K0̈2].
a Weighted averages from Refs. [Mos76, Wei76, Gla86, Wol89, K0̈2].

7.4.3 Normalisation of Hauser-Feshbach Reaction Rates at Higher Temperatures.

The method used for matching Hauser-Feshbach reaction rates to experimental rates is the same

as that outlined in section 7.3.4. In the process of matching the 22Ne(α,n)26Mg reaction rates, it was

found that at low temperatures, the only strongly contributing resonance was the lowest measured one

at Elab
r = 843 keV. A single contributing resonance does not agree with the statistical assumptions of

Ref. [New08] and consequently, the reaction rates were matched at an erroneous temperature. Visual

inspection of the resonance contributions in Fig. 7.6 shows that the true matching temperature should

be at approximately 1.0 GK, where the Elab = 823 keV resonance has a negligible contribution to the

total reaction rate. For this reason, it is safe to remove that resonance, and match the Hauser-Feshbach
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rates with a truncated set of resonances. This truncated set yields a matching temperature of T = 1.37

GK.

7.4.4 Results

The input file used to calculate the rate of the 22Ne(α, n)25Mg reaction with the RatesMC Monte

Carlo code is shown in Fig. 7.7. The resulting reaction rates are tabulated in Tab. 7.7. Note that for

this reaction, the Anderson-Darling statistic begins at higher temperatures to show agreement between

the lognormal approximation to the rate distribution and the actual distribution. This agreement is for

two reasons: (i) experiments have focused on measuring this reaction directly, resulting in a more

complete data set for resonance parameters; and (ii) Lower lying states in 26Mg no longer contribute

to the rate because they are below the neutron threshold. This effect can also be seen in Fig. 7.8,

where the reaction rate distributions better resemble lognormal shapes. Note the effect of an upper

limit cutoff on the reaction rate distributions at T = 0.06 GK.

The uncertainty bands in Tab. 7.7 are shown in Fig. 7.9 as solid lines. The upper panel shows

the current uncertainty bands in comparison to those from NACRE [Ang99]. The first thing to note

is the dramatic reduction in uncertainties in the present rates. This reduction results partially from

improved measurements of resonance parameters by Refs. [Jae01b, K0̈2]. The lower panel in Fig. 7.9

shows that the present reaction rates are up to a factor of 10 smaller than those presented in NACRE

[Ang99]. Once again, this is mostly a result of the treatment of upper limits in the present study. The

determination of unnatural parity for the previously assumed natural parity Ex = 11154 keV excited

state in 26Mg (Elab
r ≈ 630 keV) also serves to lower the reaction rate. Additionally, the NACRE

reaction rate analysis assumed wide resonances, with resonance widths given by the measured upper

limits, which are a factor of 100 larger than those used in the present analysis.

A comparison with the most recent reaction rate calculations by Ref. [Jae01b] is shown in Fig.

7.10. The top panel shows a significant reduction in uncertainties in the present rate calculations from

a factor of ten to a factor of two between T = 0.1 and 0.2 GK. This reduction in uncertainties is

partially based on the present result for the Ex = 11154 keV state, and also partially arises from

the improved resonance parameter measurements from Ref. [K0̈2]. The lower panel shows that the

current recommended reaction rates agree well with the previous results between T = 0.1 and 1.0
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Figure 7.6: Resonance contributions to the 22Ne(α,n)26Mg reaction rate. The strong resonance at Elab =
843 keV dominates the rate at low temperatures, giving rise to an unreasonable Hauser-Feshbach matching
temperature. The figure clearly shows that the true matching temperature should be at T9 ≈ 1. A similar
method of using the Gamow peak defined in Sec. 2.1 to normalise Hauser-Feshbach rates is also shown (see
Ref. [New08]).
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Figure 7.7: RatesMC input file for 22Ne(α,n)26Mg reaction rates.
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T (GK) Low rate Median rate High rate lognormal µ lognormal σ A-D
0.010 2.16×10−250 1.25×10−249 3.39×10−249 -5.734×10+02 1.32×10+00 1.08×10+02

0.011 2.00×10−228 1.14×10−227 3.09×10−227 -5.229×10+02 1.31×10+00 1.07×10+02

0.012 4.07×10−210 2.29×10−209 6.20×10−209 -4.807×10+02 1.31×10+00 1.06×10+02

0.013 1.26×10−194 7.06×10−194 1.91×10−193 -4.450×10+02 1.30×10+00 1.05×10+02

0.014 2.41×10−181 1.34×10−180 3.62×10−180 -4.145×10+02 1.30×10+00 1.05×10+02

0.015 7.88×10−170 4.34×10−169 1.17×10−168 -3.880×10+02 1.29×10+00 1.04×10+02

0.016 9.44×10−160 5.17×10−159 1.39×10−158 -3.648×10+02 1.29×10+00 1.04×10+02

0.018 6.02×10−143 3.28×10−142 8.80×10−142 -3.261×10+02 1.28×10+00 1.03×10+02

0.020 1.73×10−129 9.40×10−129 2.52×10−128 -2.951×10+02 1.28×10+00 1.03×10+02

0.025 3.30×10−105 1.85×10−104 4.97×10−104 -2.392×10+02 1.30×10+00 1.05×10+02

0.030 5.97×10−89 3.51×10−88 9.60×10−88 -2.017×10+02 1.34×10+00 1.10×10+02

0.040 1.58×10−68 1.01×10−67 2.80×10−67 -1.546×10+02 1.41×10+00 1.19×10+02

0.050 3.21×10−56 2.07×10−55 5.75×10−55 -1.263×10+02 1.41×10+00 1.20×10+02

0.060 5.90×10−48 3.43×10−47 9.30×10−47 -1.073×10+02 1.34×10+00 1.10×10+02

0.070 5.75×10−42 2.69×10−41 6.83×10−41 -9.368×10+01 1.20×10+00 9.41×10+01

0.080 2.13×10−37 7.85×10−37 1.77×10−36 -8.335×10+01 1.04×10+00 8.28×10+01

0.090 8.32×10−34 2.56×10−33 5.13×10−33 -7.523×10+01 9.20×10−01 7.02×10+01

0.100 6.69×10−31 1.74×10−30 3.28×10−30 -6.866×10+01 8.52×10−01 4.90×10+01

0.110 1.61×10−28 3.84×10−28 7.31×10−28 -6.323×10+01 8.25×10−01 2.82×10+01

0.120 1.59×10−26 3.49×10−26 7.13×10−26 -5.867×10+01 8.17×10−01 1.40×10+01

0.130 7.77×10−25 1.67×10−24 3.57×10−24 -5.477×10+01 8.08×10−01 5.16×10+00

0.140 2.30×10−23 4.84×10−23 1.05×10−22 -5.138×10+01 7.79×10−01 8.79×10−01

0.150 4.73×10−22 9.56×10−22 2.01×10−21 -4.838×10+01 7.22×10−01 2.28×10+00

0.160 7.57×10−21 1.39×10−20 2.77×10−20 -4.568×10+01 6.37×10−01 1.09×10+01

0.180 1.06×10−18 1.52×10−18 2.49×10−18 -4.096×10+01 4.36×10−01 4.34×10+01

0.200 6.82×10−17 8.39×10−17 1.13×10−16 -3.697×10+01 2.73×10−01 6.07×10+01

0.250 1.46×10−13 1.63×10−13 1.82×10−13 -2.944×10+01 1.15×10−01 3.85×10+00

0.300 2.48×10−11 2.73×10−11 2.99×10−11 -2.433×10+01 9.40×10−02 1.97×10−01

0.350 9.67×10−10 1.06×10−09 1.16×10−09 -2.067×10+01 9.01×10−02 1.81×10−01

0.400 1.51×10−08 1.65×10−08 1.79×10−08 -1.792×10+01 8.70×10−02 2.54×10−01

0.450 1.32×10−07 1.43×10−07 1.55×10−07 -1.576×10+01 8.15×10−02 2.77×10−01

0.500 8.07×10−07 8.66×10−07 9.30×10−07 -1.396×10+01 7.15×10−02 3.78×10−01

0.600 1.85×10−05 1.92×10−05 2.01×10−05 -1.086×10+01 4.23×10−02 1.10×10+00

0.700 2.83×10−04 2.91×10−04 3.00×10−04 -8.141×10+00 2.99×10−02 4.32×10−01

0.800 2.76×10−03 2.84×10−03 2.93×10−03 -5.862×10+00 3.08×10−02 4.14×10−01

0.900 1.79×10−02 1.85×10−02 1.91×10−02 -3.992×10+00 3.35×10−02 3.75×10−01

1.000 8.37×10−02 8.68×10−02 9.02×10−02 -2.443×10+00 3.76×10−02 4.61×10−01

1.250 1.51×10+00 1.59×10+00 1.68×10+00 4.676×10−01 5.32×10−02 1.57×10+00

1.500 (1.33×10+01) (1.41×10+01) (1.50×10+01) (2.649×10+00) (5.99×10−02)
1.750 (8.18×10+01) (8.68×10+01) (9.22×10+01) (4.464×10+00) (5.99×10−02)
2.000 (3.56×10+02) (3.78×10+02) (4.01×10+02) (5.935×10+00) (5.99×10−02)
2.500 (3.33×10+03) (3.54×10+03) (3.76×10+03) (8.171×10+00) (5.99×10−02)
3.000 (1.71×10+04) (1.82×10+04) (1.93×10+04) (9.808×10+00) (5.99×10−02)
3.500 (6.04×10+04) (6.42×10+04) (6.81×10+04) (1.107×10+01) (5.99×10−02)
4.000 (1.65×10+05) (1.75×10+05) (1.86×10+05) (1.207×10+01) (5.99×10−02)
5.000 (7.42×10+05) (7.88×10+05) (8.37×10+05) (1.358×10+01) (5.99×10−02)
6.000 (2.20×10+06) (2.33×10+06) (2.48×10+06) (1.466×10+01) (5.99×10−02)
7.000 (4.95×10+06) (5.26×10+06) (5.58×10+06) (1.548×10+01) (5.99×10−02)
8.000 (9.38×10+06) (9.96×10+06) (1.06×10+07) (1.611×10+01) (5.99×10−02)
9.000 (1.56×10+07) (1.66×10+07) (1.76×10+07) (1.662×10+01) (5.99×10−02)
10.000 (2.39×10+07) (2.54×10+07) (2.70×10+07) (1.705×10+01) (5.99×10−02)

Table 7.7: Monte Carlo reaction rates for the 22Ne(α,n)26Mg reaction. See Tab. 7.4 for a description of the
table.
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Figure 7.8: Reaction rate probability densities for the 22Ne(α,n)25Mg reaction. Shown are histograms of the
Monte Carlo reaction rates, as well as the lognormal approximation calculated from Eq. (2.28).
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Figure 7.9: The uncertainty bands for the 22Ne(α,n)25Mg reaction in comparison to those presented by the
NACRE compilation [Ang99]. See Fig. 7.3 for a description of the plotted lines.
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GK, with a slight dip at T ≈ 0.15 GK arising from the present Ex = 11154 keV result.

A further comparison can be made between the Monte Carlo reaction rates prior to and following

the experiment discussed in Sec. 5. This comparison is made in Fig. 7.11. The upper panel of the figure

shows approximately equal uncertainties. This is expected because only the upper limit resonance at

Elab
r ≈ 630 keV is removed in the present result. The new statistical method of calculating upper

limits reduces their impact on reaction rates, resulting in only a small reduction in uncertainty shown

at T ≈ 0.15 GK when the resonance is removed. The lower panel in Fig. 7.11 shows a slight dip

in reaction rate at T ≈ 0.15 GK that was observed in Fig. 7.10, arising from the removal of the

Elab
r ≈ 630 keV resonance upper limit.

7.4.5 Influence of 832 keV Resonance Assignments

The resonance at Er = 832 keV was assumed to be the same state as that seen in the measurements

of 22Ne(α,γ)25Mg. This state has been assumed to be a Jπ = 2+ state, with a width of that measured

by Jaeger et al. [Jae01b]. The other possibility is that these two resonance are, indeed, corresponding

to separate states as Koehler suggests [K0̈2]. See Sec. 7.4.1 for more discussion. Figure 7.12 shows

the effect of assuming two distinct resonances on the 22Ne(α,γ)26Mg reaction rate. In separating these

resonances, the only excited state that is corresponds to the Elab
r = 832 keV resonance in energy is at

Ex = 11326.13(54) keV (compared with Ex = 11319(2) measured by Jaeger et al.) [Jae01b]. This

state has a measured total width of Γ = 428(86) compared to the width of Γ = 250(170) measured by

Jaeger et al. [Jae01b]. The weighted average of these widths was used in the present calculation. This

state also has Jπ = 1−, where Ref. [Jae01b] assume a spin-parity of 2+ from the Giesen et al. [Gie93]

assignment of Jπ = (1−)2+. In the present calculation, Jπ = 1− has been assigned to this resonance.

The transfer measurement of Giesen et al. [Gie93] could have observed a doublet corresponding to

the 22Ne(α, γ)26Mg and 22Ne(α, n)25Mg resonances.

The results of assuming two distinct resonances at Elab
r = 830 keV is shown in Fig. 7.12. The

top panel shows that the rate uncertainties obtained when assuming a single state (solid lines) are

comparable to those resulting from separating the states into a doublet (dashed line). The smaller

uncertainties for two resonances at low temperatures arise from taking a weighted average of the

resonance width. A weighted average will reduce uncertainties in the width, resulting in smaller
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Figure 7.10: Reaction rate comparison with the rates presented by Jaeger et al. [Jae01b]. See Fig. 7.3 for a
description of the plotted lines.
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Figure 7.11: Comparison with rates obtained prior to the recent 26Mg(γ, γ)26Mg measurement. See Fig. 7.3
for a description of the plotted lines.
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uncertainties in the wide resonance reaction rate from that state. The lower panel shows that a single

resonance at Elab
r = 830 keV produces a slightly higher strength at T = 0.2 GK. This is because

the partial widths calculated in this case are slightly larger than if the resonance is assumed to be

a doublet. To remove ambiguities in the parameters of this resonance, direct measurements of both

the 22Ne(α, n)25Mg and the 22Ne(α, γ)26Mg reactions with precise energy calibrations should be

performed.
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Figure 7.12: The effect of separating the 832 keV resonance into two resonances on the reaction rate. The
solid lines represent the present reaction rate, where a single state is assumed to be responsible for the two
resonances. Dashed lines represent the case assuming two distinct resonances. In the lower panel, the ratio
of present rates to the doublet rates are displayed. A ratio above unity means that the single state assumption
produced higher rates than that of a doublet. See Fig. 7.3 for a description of the plotted lines.
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8 Conclusions

FOR over half a century, the s-process has been associated with the production of many elements

heavier than iron. The s-process consists of the slow capture of neutrons followed by β-decay

on seed nuclei to produce nuclei up to the most massive stable nucleus, 209Bi. Models of the s-process

show [Kae90] that there must be two contributions to the s-process: the main component, occurring

over relatively long time periods for a limited proportion of seed nuclei, and the weak component,

involving a more efficient neutron exposure operating for a short period of time. The main s-process

component produces nuclei up to a cut-off mass of A = 209, while the weak component is responsible

for the enhancement of nuclear abundances at A < 90. The stellar environments responsible for the

main and weak s-process components are AGB stars and massive stars, respectively.

The 22Ne(α, n)25Mg neutron producing reaction is important both in AGB stars and in massive

stars. In massive stars, it is the main source of s-process neutrons during the core helium burning

stage, with the possibility of producing an extra flux of neutrons during the carbon burning stage. In

AGB stars, the 13C(α,n)13N reaction is the main s-process neutron source, with the 22Ne(α, n)25Mg

reaction mainly affecting branchings in the s-process path leading to enrichment in some elements

[Gar06]. It has also been postulated that the 22Ne(α, n)25Mg reaction could be the main neutron

source in metal poor AGB stars with masses larger than M = 5M" [Lug08].

In order to address some of the astrophysical questions regarding the s-process in these environ-

ments, the 22Ne(α, n)25Mg reaction and its competing 22Ne(α, γ)26Mg reaction have been studied

in the present work. In Ch. 2, a new Monte Carlo method of propagating reaction rate uncertainties

was developed. The new method provides, for the first time, statistically meaningful reaction rates

(in which the coverage probability can be quantified). Treatment of upper limits in resonance pa-

rameters was improved to provide a statistically meaningful calculation of reaction rates arising from



unobserved resonances.

In Ch. 5, an experiment to measure the spin-parities of several excited states in the 26Mg com-

pound nucleus for the 22Ne(α, n)25Mg and 22Ne(α, γ)26Mg reactions was described. The measure-

ment consisted of exciting the ground state of 26Mg with an intense photon beam through the reaction
26Mg(γ, γ)26Mg . The measurement improved our knowledge of the resonance parameters signifi-

cantly. Perhaps the most important result of the 26Mg(γ, γ)26Mg experiment was the unnatural spin-

parity determination for the state associated with the previously suggested Elab
r = 633 keV resonance.

This resonance had been the subject of numerous experimental searches, and has finally been shown

here not to contribute to the rates of the 22Ne+α reactions.

Calculations of the reaction rates for 22Ne(α, n)25Mg and 22Ne(α, γ)26Mg in Ch. 7 show a

significant reduction in reaction rate uncertainties. However, it was shown that the reactions are

still uncertain in important aspects. The Elab
r = 830 keV resonance quantum numbers and energy

must be resolved in both reactions to determine if a doublet exists at this energy. Furthermore, the
22Ne(α, γ)26Mg reaction, which is lacking in direct experimental data, should be explored at energies

between Er = 800 and 2000 keV. Resonances below these energies should be measured indirectly

through α-particle transfer measurements. Ambiguities in current experimental data at low energies

must be resolved.

One of the main sources of uncertainty in measuring reactions directly is the target stoichiome-

try. In Ch. 6, a novel method was developed to determine the stoichiometry of targets produced by

implanting 22Ne into an aluminium substrate, which was used to calculate the 22Ne(p,γ)23Na reso-

nance strength at Elab
r = 479 keV with significant improvements in uncertainty. This low energy

resonance is now available for determining the stoichiometry of implanted targets to be used in di-

rect 22Ne(α, n)25Mg and 22Ne(α, γ)26Mg resonance strength measurements, reducing uncertainties

in these measurements considerably.

Given the results presented in this work, the next step will be to perform model calculations of

AGB stars and massive stars to determine the influence of the new reaction rates on the s-process.

The present results are expected to reduce uncertainties in s-nuclei production yields and will, there-

fore, improve stellar models. As the uncertainty in nuclear input to stellar models improves, our

understanding of the way stars burn will, one day, be understood.
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A Statistical Distributions

A brief review of statistical distributions relevant to the present work is provided. These dis-

tributions were found in Sec. 2.2 to best describe the probability density functions of nuclear input

quantities for reaction rate calculations.

The expectation value and variance of a parameter, x are given by

E[x] =

∫ ∞

−∞
xf(x)dx, V [x] =

∫ ∞

−∞
(x − E[x])2f(x)dx (A.1)

where f(x) is the (normalised) probability density function. The cumulative distribution, which is

useful for finding the quantiles (or percentiles) of a distribution and for calculating the Anderson-

Darling statistic in Sec. 2.2.3, is defined by

F (x) =

∫ x

−∞
f(x′)dx′ (A.2)

If f(x) is correctly normalised, the median of x, for example, corresponds the point at which the

cumulative distribution reaches 0.5.

A.1 Gaussian Distribution

The Gaussian distribution is the most commonly used statistical distribution because of its sim-

plicity and ease of calculation. The probability density function of a normally (Gaussian) distributed

variable x is given by

f(x) =
1

σ
√

2π
e−(x−µ)2/(2σ2) (A.3)

where the parameters µ and σ refer to the mean and standard deviation, respectively. For a Gaussian

distribution, the expectation value and variance are

E[x] = µ, V [x] = σ2 (A.4)
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Figure A.1: Comparison of lognormal (dashed line) and Gaussian (solid line) distributions for two specific
cases. In case (a), the uncertainty is fairly large in comparison to the mean value (E[x] = 50 and V [x] = 202),
and there is little agreement between the distributions (note also that the Gaussian extends visibly to negative
values). Case (b), for E[x] = 50 and V [x] = 102, the distributions are very similar.

A.2 Lognormal Distribution

If the natural logarithm of a variable is normally distributed, then the variable will follow a log-

normal distribution:

f(x) =
1

σx
√

2π
e−(ln x−µ)2/(2σ)2 (A.5)

The parameters of the lognormal distribution, µ and σ, are not the same quantities as for the Gaussian

distribution. They do not represent the mean and standard deviation of the variable, x, but of lnx.

The expectation value and variance are given by

E[x] = e(2µ+σ2)/2, V [x] = e(2µ+σ2)/2
[

eσ2
]

(A.6)

It is worth noting that the lognormal distribution will approach a Gaussian as the parameter σ becomes

small in comparison to µ. An example of this is shown in Fig. A.1. This feature of the lognormal

distribution is useful for describing reaction rate probability distributions at high temperatures, which

tend towards a Gaussian shape. See Sec. 2.2.3 for more details.
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A.3 Chi-squared Distribution

The standard normal distribution is defined as a normal distribution with µ = 0 and σ = 1.

The sum of the squares of k standard normal distributions is distributed according to a chi-squared

distribution with k degrees of freedom.

The case in which the degrees of freedom is unity is defined as,

f(x) =
1√
2πx

e−x/2 (A.7)

Note that there are no defining parameters to the distribution. However, the variable x can be defined

as the ratio of a quantity to its mean value, i.e., x ≡ y/〈y〉. The expectation value and variance are

given by

E[x] = k = 1, V [x] = 2k = 2 (A.8)
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B Reaction Rate Calculations

B.1 Excitation Energies

The excitation energies for all observed excited states are taken as the weighted average of energies

observed in Refs. [Wei76, K0̈2, Jae01b, Uga07, Wol89, Gla86, Dro93, Mos76], as well as from the

present results from the 26Mg(γ, γ)26Mg experiment in chapter 5. The states are matched as closely as

possible between experiments by looking at resonance parameters such as partial widths and quantum

numbers as discussed in the main text. Tables B.3 and B.1 list the energies obtained.

(α,pγ) (p,p′) (n,γ) (α,γ),(α,n) (α,n) (α,n) (γ,γ) Weighted Average

[Gla86] [Mos76] [K0̈2] [Wol89] [Jae01b] [Dro93]

11114(3) 11112.192(84) 11112.164(77)

11156(3) 11153.387(86) 11153.84 (29) 11153.392(76)

11162.937(92) 11162.949(91)

11171(3) 11169.31(17) 11169.34(13)

11171.06(16) 11171.07(15)

11183.06(18) 11183.06(18)

11189.21(10) 11189.21(10)

11191(2) 11191(2)

11194.5(2)

11243.19(11) 11243.22(10)

11274.11(11) 11274.11(11)

11280.04(12) 11279.90(10)

11285.60(12) 11285.60(12)

11286.34(12) 11286.38(11)

11289.03(43) 11289.15(25)

11296.09(13) 11295.99(13)

11310.50(49) 11310.50(49)

11315(5) 11319(2) 11318.1(21)

11326.13(54) 11326.13(54)

11329(2) 11328.17(14) 11328.19(14)

11329.12(54) 11329.12(54)

11336.91(56) 11336.91(56)

11343.96(16) 11343.93(15)

11344.82(16) 11344.82(16)

11362.0(6)
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continued from previous page
(α,pγ) (p,p′) (n,γ) (α,γ),(α,n) (α,n) (α,n) (γ,γ) Weighted Average

[Gla86] [Mos76] [K0̈2] [Wol89] [Jae01b] [Dro93]

11364.9(6)

11372.5(6)

11392.55(17) 11392.56(16)

11425.40(70)

11440.92(20) 11441(2) 11440.83(19)

11457(2) 11457(2)

11465.40(22) 11461(2) 11465.23(21)

11499.4(8)

11506(2) 11508.1(9)

11526(2) 11526(2)

11540.8(9)

11570(2) 11570(2)

11586(1)

11626(10) 11630(2) 11630(2)

11655(10) 11655(10)

11748(8) 11748(8)

11795(10) 11787(3) 11787(3)

11801(6) 11801(6)

11828(3) 11828(2) 11828(2)

11863(3) 11863(3)

11880(5) 11880(3) 11880(3)

11895(5) 11891(3) 11891(3)

11912(3) 11910(3) 11910(3)

11953(3) 11951(3) 11951(3)

12051(3) 12052(3) 12052(3)

12116(8) 12115(4) 12115(4)

12139(3) 12141(3) 12141(3)

12184(8) 12184(7) 12184(7)

12273(8) 12265(8) 12265(8)

12343(5) 12346(7) 12346(7)

12435(8) 12435(8)

12551(13) 12551(13)

Table B.1: Table of excitation energies above the neutron threshold
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Energy (keV) (α,pγ) (n,γ) (6Li,d) (α,γ),(α,n) (α,n) (γ,γ) Assignment

[Gla86] [K0̈2] [Gie93] [Wol89] [Jae01b]

11112.164(77) 2+ 2+

11153.392(76) 1− 1+ 1+

11162.949(91) 2+ 2+

11169.34(13) 3+ 3+

11171.07(15) (2+) (2+)

11183.06(18) (1−) (1−)

11189.21(10) 3+ 3+

11191(2) (3−-6+) (3−-6+)

11194.5(2) 2+ 2+

11243.22(10) 2(−) 2(−)

11274.11(11) (2)+ (2)+

11279.90(10) 4− 4−

11285.60(12) 1− 1−

11286.38(11) (2+) (2+)

11289.15(25) (2−) (2−)

11295.99(13) (3−) (3−)

11310.50(49) (1−) (1−)

11318.1(21) (1−)2+ 2+ 2+

11326.13(54) (1−) (1−)

11328.19(14) (3+-7+) 1− (1−,2+)

11329.12(54) (1−) (1−)

11336.91(56) (1−) (1−)

11343.93(15) (4−) (4−)

11344.82(16) (2+) (2+)

11362.0(6)

11364.9(6)

11372.5(6)

11392.56(16) 5(+) 5(+)

11425.40(70)

11440.83(19) 4+ 1− 4+

11457(2) (1−,2+)3− (1−,2+)3−

11465.23(21) 5− 1− 5−

11499.4(8)

11508.1(9) 1− 1−

11526(2) 1− 1−

11540.8(9)

11570(2) (4+-7+) (4+-7+)

11586(1) 1−,2+,3− 2+ 2+
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continued from previous page
Energy (keV) (α,pγ) (n,γ) (6Li,d) (α,γ),(α,n) (α,n) (γ,γ) Assignment

[Gla86] [K0̈2] [Gie93] [Wol89] [Jae01b]

11863(3)

11880(3)

11891(3) 1−,2+,3− 1−,2+,3−

11910(3) 1−,2+ 1−,2+

11951(3) 2+,3−,4+ 2+,3−,4+

12052(3) 2+,3− 2+,3−

12115(4) (0+) (0+)

12141(3)

12184(7) (0+) (0+)

12265(8) (0+) (0+)

12346(7) 0+ 0+

12435(8)

12551(13)

Table B.2: Spin-parity assignments for states in 26Mg. Italic numbers are taken from Ref. [Wei76]

B.2 Calculating Upper Limits

Upper limits for resonances in the 22Ne(α,γ)26Mg reaction were calculated from Fig. 7a in Ref.

[Wol89]. That figure plots the cross section of the reaction versus the α-particle energy. The cross

section was calculated using a wide resonance approximation:

Iγ(Eeff)

Iel(θlab)
= [lαdΩσR(θlab)]

−1 lγεγ(b = 0)σ(Eeff) (B.1)

where Iγ is the intensity of γ-rays measured in the detector; Iel is the number of elastically scattered

α-particles; lα and lγ are the effective target lengths for the α-particle and γ-ray, respectively; dΩ is

the solid angle of the γ-ray detector; σR is the elastic scattering cross section; εγ is the γ-ray detection

efficiency and σ(Eeff) is the cross section for the reaction. We will assume that the detector efficiency

is approximately constant in this region, and will assume constant lγ .

All of the states in this region are much narrower than the 50 keV thick target used by Wolke et

al., as shown in Tab. 7.1. Therefore, this cross section curve can be treated as a thick target yield in
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(γ,γ) (α,pγ) (p,p′) (nt,γ) (6Li,d) (6Li,d) (γ,γ) Resulting Assignment
[Ber69] [Gla86] [Mos76] [Wal92] [Gie93] [Uga07]

10647 (2) 10644(3) 10647.36(18) 10647.35(18)
10650(2) 10650(3)

10678(3) 10678(3)
10681.9(3) 10681.9(3)

10695(2) 10689(3) 10694(20) 10693.2(16)
10709(2) 10702(3) 10707(3)

10715(3) 10718.75(90) 10718.75(9)
10726(3) 10726(3)
10744(3) 10745.98(12) 10745.98(12)

10766(2) 10769(3) 10767(3)
10805.9(4) 10808(20) 10805.86(16) 10805.87(15)

10824(3) 10824(3)
10881(3) 10881(3)
10893(3) 10893(3)
10915(3) 10915(3)
10927(3) 10927(3)

10943(2) 10943(2)
10950(3) 10953(25) 10949.09(15) 10949.09(15)
10978(3) 10978(3)
10998(3) 10998(3)

11010(2) 11017(3) 11012(3)
11048(3) 11048(3)
11084(3) 11084(3)

Table B.3: Table of excitation energies below the neutron threshold

the low energy region. In the thick target approximation, the yield of a resonant reaction is given by:

Ymax =
λ2

r

2

ωγ

εr
(B.2)

where λr is the deBroglie wavelength at the resonance energy, Er; ωγ is the resonance strength and

εr is the effective stopping power. In order to calculate the upper limits, a 4th order polynomial

stopping power correction for energies away from our normalisation point at 832 keV was calculated

with SRIM [Zie04], so the upper limit resonance strength could be obtained using:

ωγUL = N
2

λ2
r
CrY (B.3)

where N is a normalisation factor found from the 832 keV resonance and Cr is the stopping power

correction. Once an upper limit for the resonance strength was found, the upper limit for the α-particle

partial width was obtained from Eq. (2.16). The total widths and quantum numbers of the resonances
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Excitation Energy (keV) (γ,γ) (α,pγ) (nt,γ) (6Li,d) (γ,γ) Resulting Assignment
[Ber69] [Gla86] [Wal92] [Uga07]

10646(2) 1+ 1+ 1+

10650(3) (4−-7−) (4−-7−)
10678(3)

10681.9(3)
10693.2(16) (3+-7+) Natural (4+)

10707(3) (2+-6+) (2+-6+)
10718.75(9)

10726(3)
10745.98(12)

10767(3) (1+-4+) (1+-4+)
10805.9(4) (0+-4+) Natural 1− 1−

10824(3)
10881(3)
10893(3)
10915(3)
10927(3)
10943(2) (4±-7±) (4±-7±)

10949.09(15) Natural 1− 1−
10978(3)
10998(3)
11012(3) (2+-6+) (2+-6+)
11048(3)
11084(3)

Table B.4: Spin-parity assignments below the neutron threshold

are taken from Ref. [K0̈2]. The reference resonance used was that at Eα = 828 keV. DataThief c©

[Tum] was used to extract the cross sections of the resonances and upper limit points. The upper limit

points in Ref. [Wol89] were at an approximately constant level, so a single upper limit cross section

of σ = 2.5 × 10−4 µb was adopted. Upper limit resonance strengths were obtained, and Eq. (2.16)

could be used to find the upper limit for Γα.

Another method of calculating upper limit partial widths is to consider the spectroscopic factors

of the states in question. The partial width of a state was defined in Eq. (2.18).A conservative upper

limit can be calculated by assuming a spectroscopic factor and single-particle reduced width of unity,

giving us an upper limit defined as:

ΓUL = 2
!2

µR2
P (B.4)
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The penetration factor was calculated numerically from coulomb wave-functions.

The upper limits in this work were taken as the smaller of the values from the two methods.

Elab (keV) Jπ (α,γ) Upper Limit Γα (eV) (α,n) Upper Limit Γα (eV)
From Wolke Assuming C2Sθ = 1 Adopted From Jaeger Assuming C2Sθ = 1 Adopted

587.90 2 7.22E-07 7.73E-09 7.73E-09 6.57E-09 7.73E-09 6.57E-09
647.93 2 8.11E-07 8.74E-08 8.74E-08 7.38E-09 8.74E-08 7.38E-09
657.53 2 8.25E-07 1.25E-07 1.25E-07 7.50E-09 1.25E-07 7.50E-09
671.70 2 8.45E-07 2.08E-07 2.08E-07 7.69E-09 2.08E-07 7.69E-09
742.81 2 9.46E-07 2.16E-06 9.46E-07 8.61E-09 2.16E-06 8.61E-09
779.32 2 9.97E-07 6.32E-06 9.97E-07 9.07E-09 6.32E-06 9.07E-09
786.17 4 5.59E-07 9.16E-08 9.16E-08 5.09E-09 9.16E-08 5.09E-09
792.90 1 1.69E-06 3.54E-05 1.69E-06 1.54E-08 3.54E-05 1.54E-08
793.83 2 1.02E-06 9.49E-06 1.02E-06 9.25E-09 9.49E-06 9.25E-09
797.10 2 1.02E-06 1.04E-05 1.02E-06 9.29E-09 1.04E-05 9.29E-09
805.19 3 7.37E-07 1.86E-06 7.37E-07 6.71E-09 1.86E-06 6.71E-09
822.64 1 1.81E-06 1.32E-04 1.81E-06 1.60E-08 7.83E-05 1.60E-08
840.81 1 1.80E-06 1.24E-04 1.80E-06 1.23E-07 1.24E-04 1.23E-07
843.24 1 1.81E-06 1.32E-04 1.81E-06 1.24E-07 1.32E-04 1.24E-07
844.35 1 1.81E-06 1.36E-04 1.81E-06 1.24E-07 1.36E-04 1.24E-07
853.55 1 1.83E-06 1.71E-04 1.83E-06 1.25E-07 1.71E-04 1.25E-07
861.86 2 1.11E-06 5.52E-05 1.11E-06 7.58E-08 5.52E-05 7.58E-08
862.91 4 6.16E-07 7.10E-07 6.16E-07 4.22E-08 7.10E-07 4.22E-08
919.34 5 5.37E-07 1.51E-07 1.51E-07 3.68E-08 1.51E-07 3.68E-08

Table B.5: Upper limit calculations for 22Ne +α. Resonance energies are in the laboratory frame.

The estimation of upper limits in the 22Ne(α, n)25Mg reaction utilised Fig. 1 in Ref. [Jae01b], and

followed the same technique as outlined above.
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C 22Ne Targets

Targets were produced for measuring the 22Ne(α, γ)26Mg and 22Ne(α, n)25Mg reactions directly.

The targets were produced using the implantation procedure described in Sec. 4.4 for a ∆E = 30 keV

targets for α-particles at Eα ≈ 600 keV. For a target stoichiometry of Ne:Ta= 1 : 2, the implantation

parameters were calculated to be:

Parameter Value
Required Dose 0.25 C

65 keV for Ta
Implantation Energy 50 keV for Cu

40 keV for Ni

Table C.1: Implantation parameters used to produce 22Ne targets. The target thickness desired was ∆E = 30
keV for Eα ≈ 600 keV α-paricles.

A total of six targets were produced in this manner: three with tantalum backings, two with nickel

backings, and a single copper backing target. Detector efficiencies were not well determined for a

number of the targets, leading to ambiguities in the target stoichiometries. These targets should be

reanalysed before use in a 22Ne(α, n)25Mg or 22Ne(α, γ)26Mg measurement.

Using the determined strength of ωγ = 0.524(51) for the 22Ne(p,γ)23Na resonance at Elab
r =

479 keV (Sec. 6), each target was analysed by measuring the resonance yield curve. The obtained

stoichiometries are shown in Tab. C.2.

Target Stoichiometry NNe/Nb

Tantalum 1 0.107 (13)
Nickel 2 0.111 (13)
Tantalum 3 0.374 (43)
Tantalum 4 0.398 (93)

Table C.2: Stoichiometries obtained for the implanted 22Ne targets described in Tab. C.1.
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