Tomographic mammography using a limited number of low-dose cone-
beam projection images
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A method is described for using a limited numkgrpically 10-50 of low-dose radiographs to
reconstruct the three-dimension@D) distribution of x-ray attenuation in the breast. The method
uses x-ray cone-beam imaging, an electronic digital detector, and constrained nonlinear iterative
computational techniques. Images are reconstructed with high resolution in two dimensions and
lower resolution in the third dimension. The 3D distribution of attenuation that is projected into one
image in conventional mammography can be separated into many layeisally 30-80 1-mm-

thick layers, depending on breast thicknesscreasing the conspicuity of features that are often
obscured by overlapping structure in a single-projection view. Schemes that record breast images at
nonuniform angular increments, nonuniform image exposure, and nonuniform detector resolution
are investigated in order to reduce the total x-ray exposure necessary to obtain diagnostically useful
3D reconstructions, and to improve the quality of the reconstructed images for a given exposure.
The total patient radiation dose can be comparable to that used for a standard two-view mammo-
gram. The method is illustrated with images from mastectomy specimens, a phantom, and human
volunteers. The results show how image quality is affected by various data-collection protocols.
© 2003 American Association of Physicists in Medicid@OI: 10.1118/1.1543934
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[. INTRODUCTION mension, the number of images and the dose required to
rP_roduce diagnostically useful reconstructed images can be
dramatically reduced, with a corresponding decrease in the
image collection time, and without unacceptable reduction in

information is projected into a two-dimensior(@D) image. SNR. We present two general approaches to accomplishing

Image interpretation requires estimating and discounting thgq'_s: @ recordmg_ the projection Images at large and/or non-
overlap of normal tissue structures that can be mistaken fofMiform angular increments, and) using varying detector
abnormalities. Especially in radiodense breasts, lesions cdfySolution(effective pixel sizg These two approaches may
be obscured by normal breast tissue. Digital x-ray detector&/S0 be used in combination. The methods reported here are
present the possibility of acquiring multiple low-dose images2PPropriate for applications in which the number of projec-
taken from differing angles to enhance the visibility of fea- tions is limited by constraints of access or the need to limit
tures within the breast. The number of 2D cone-beam imagedi€ total dose and/or exposure time, and in which anisotropic
required to calculate a 3D reconstruction with isotropic reso3D information is useful. We have developed the method in
lution is Neompiete= 7D/1, where D is the object diameter the context of mammography, but the approach should also
andr is the resolutiort. For example, a 10-cm-diam breast at be applicable to other x-ray imaging tasks.

0.2 mm resolution(5 Ip/mm) would require>1000 images. Our objective is to record a limited numberN (
Such a large number of projections is impractical, not only<<Ncompierd Of low-dose x-ray projection such that the total
because of excessive acquisition time, but also because ttiadiation dose to the patient is comparable to that used for
exposure per projection required for adequate signal-to-noiséie two projection views of a conventional mammogram.
ratio (SNR) would result in an unacceptably high radiation From these images, a 3D x-ray attenuation distribution is
dose. However, if lower resolution is acceptable in one di<computed in which the high resolution of a standard projec-

Standard mammography techniques, using either scree
film or digital detectors, suffer from the limitation that de-
spite breast compression, three-dimensi@8Bl) anatomical
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tion mammogram is retained in the two dimensions lying in
the plane of the compression paddiiefined here as th&Y

plane, while lower resolution is obtained in the third dimen- SOURce @ """"""" 9.
sion (defined here aZ). This reconstructed volume can then i '
be decomposed into a set of slices that are less subject t /
obscuring by tissue structures above and below the slice tha "

a SPATIAL DOMAIN FREQUENCY DOMAIN

a standard mammogram.

As discussed in the following, practical implementation of ossect ‘
the method require€1) a detector with fast image readout, \
large area, high resolution, and high detective quantum effi- 9

. .. Y

ciency(DQE) at low x-ray flux;(2) a specialized gantry that x DETECTORA x
allows acquisition of sequential images over a range of \ e DETECTORS r
angles at repetition rates efl s; (3) a method for immobi- z z
lizing the breast{4) a computes) with a GHz process¢s)

and Gbyte RAM; and5) image-reconstruction software rou-
tines. We found that routines based on constrained nonlinea
algorithms provided more useful reconstructions than com-
putationally  simpler methods such as filtered
backprojectiorf. The computer requirements reflect the need
to use these more computationally intensive iterative meth-
ods. OBJECT

For a practical mammography system, the seétl ithages
should be collected in less than10 s in order to avoid e
image blur from patient motion. The need to keep the total I
acquisition time short, and the time interval required to trans-
fer each image out of the detector, define the number ofic. 1. Schematic drawing of the geometry used for imagmghantoms,
projections that can be acquired. Because the dose in ea@hd(b) patients and mastectomy samp{tmmosynthesis imagingand the
X-ray exposure can be onPy 2/N of the dose for a single (approxm_]até: _relatlonshlp of object prOJeCtlons in the spatial domain to

. - . central slices in the frequency domain.
standard mammogram, a detector with low ndiseluding
the noise associated with transferring each image from the
sensor to a computeis necessary in order to keep the read-acquired using this acquisition scheme, but reconstructed us-
out noise from significantly degrading the image quality. Foring maximum-likelihood, iterative 3D reconstruction meth-
100 um resolution in theXY plane(16 bits/pixe), there are  ods.
6 M image pixelg12 Mbytes per image for a 20 cpi30 cm
detector, requiring a readout rate ofr Ibytes/s, where is  ||. BACKGROUND
the number of projections/s.

Several investigators have sought to develop methods th
reduce the number of images required for 3D mammography. For the studies described here, digital area x-ray detectors
Maidmentet al. used a feature-based image reconstructiorand point x-ray sources were used. According to the central
method to allow 3D reconstructions from a limited numberslice theoren?, if the distance from the radiation source to
of views? This technique is useful for high-contrast featuresthe object is infinite, as in the case of parallel beam illumi-
such as microcalcifications, but is not useful for imaging softnation, the 2D Fourier transform of a single transmission
tissue. Niklasoret al. described a method, “digital tomosyn- image is equal to a plane through the origin of the 3D Fou-
thesis breast imaging,” that uses a small num@er12 of  rier transform of the object. If the distance from the radiation
images® The detector and breast are stationary, and imagesource to the object is not infinite, and the geometry is thus
are collected over less than 18®@pically ~50°) by moving  cone beam rather than parallel beam, the above-given de-
the x-ray sourcé.The images are electronically shifted and scription may still serve as a good approximation as long as
added to reconstruct image slices at different depths withithe cone beam angle and the source rotation afgéee
the breast, with a depth resolution on the order of 1-2 mmsmall (<2°).”® Figure 1 illustrates the relationship between
This method is equivalent to a backprojection method with ahe object projections in the spatial domain recorded by the
limited number of views. However, backprojection has a lim-detector and the central slices in the frequency domain.
ited capability for showing low-contrast features, and re-While Fig. 1 is not strictly valid for larger angles, it does
quires an angular range of more than 180° for a cone beaiflustrate the information that is collected with the method.
geometry. Fourier-based reconstruction meth¢elg., fil-  Because of the perspective transformation inherent in cone
tered backprojectionenhance the contrast, but generate verybeam imaging, the central slice theorem is not directly appli-
significant reconstruction artifacts when used with a limitedcable to cone beam imaging. The object projection recorded
number of projections over a limited angular rafigeor our  at angular positiorA corresponds to the central slié€ in
study, the patient and mastectomy projection images werthe frequency domain, and the object projection recorded at

;
4 CENTRAL SLICE B

b SPATIAL DOMAIN FREQUENCY DOMAIN

CENTRAL SLICE

5,[. Image collection
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Fic. 2. Representation oXZ planes in the frequency domain f@@ completely sampled isotropic resolutiofiy) uniform angular spacing, incompletely
sampled isotropic resolutiori¢) nonuniform angular spacing, incompletely sampled isotropic resolutibrimited-angle sampling(e) completely sampled
anisotropic spatial resolutior(f) uniform spacing, incompletely sampled anisotropic spatial resolutignnonuniform spacing, incompletely sampled,
anisotropic spatial resolution; arttl) limited-angle, anisotropic spatial resolution.

the angular positioiB corresponds to the central sli& in image, so the aggregate dose becomes higN Agcomes
the frequency domain. The high frequency cutbfé., the large. For a low-noise electronic detector, collecting a large
length of the central sliges determined by the spatial reso- number of images with the same total dose as a single expo-
lution of the projection data. This is discussed further in Secsure may not significantly degrade the SNR. An example is
IIC. the low-noise charge coupled devi¢eCD)-based detector

For the phantom studies described here, the sample wased for the phantom imaging studies. For an exposure of
rotated while the detector and x-ray source remained statior2000 x-ray photons/pixel we observe a SNR~80. For 100
ary, so that the normal to the detector surface at the center ahages with the same total do&20 x-ray photons per pixel
the detector always intersected the focal spot for all viewsper image, the SNR drops only to 25. Thus, using a low
This is the acquisition geometry shown in Figall For the  noise digital detector, it is possible to collect multiple pro-
specimen and patient studies, the flat panel detector was kejaictions without incurring a large SNR penalfifhe fre-
stationary while the tube was moved. This acquisition geomeuency dependent DQE is a more significant measure of de-
etry is shown schematically in Fig(d). Note that, because tector performance than the SNR. For the CCD-based
of the increasing obliquity of the x-ray beam with increasingdetector, measurements of the D@Efpave been made for
0, there is an effective reduction in spatial resolutiorddas  exposures down te-900 x-ray photons/pixel through a 3.8
increased. This is reflected in the reduced length of the cerem acrylic absorbefd mR entrance exposur® but it is not
tral slice sampled in frequency space. Thus the region opossible to extrapolate these measurements to very+4®0
frequency space sampled during the acquisifibe shaded x-ray photons/pixgl exposureg. For comparison with im-
region is no longer symmetrical, as in Fig(a. Also, the ages presented in the following, 2000 x-ray photons per pixel
range of imaging angles is limited by the size of the detectoin the area under the sample corresponds to an entrance ex-
and the object-to-detector distance, as indicated in Rlg). 1 posure, for the CCD detector, 6170 mR for the 5-cm-

For instance, if an air gap is used with this geometry, thehick phantom, Mo/Mo at 25 kVp, 110 cm source to detector.
range of angles is reduced. For the specimen and patiefor the flat panel amorphous silicon detector, 2000 x-ray
studies reported here, the use of an air gap was not investphotons per pixel correspond to an entrance exposure30f
gated. Because the angle between the source and the deteataR (14 mrad dosgfor a 6 cmbreast, Rh/Rh, 30 kVp.

face changes as the detector rotates, the use of a grid is not

practical for the geometry in Fig.(4).

The disadvantage of takird low-dose images, each with
an exposure o, as opposed to taking a single image with an  The goal of limited, and/or nonuniform angular sampling
exposure ofNe, is the increase in total image noise. For ais to reduce the number of images that must be acquired.
detection system with high noise, such as screen-filhere = Some schemes that could be used to accomplish this are
film granularity noise is significaf, relatively high expo- illustrated in Fig. 2. One approach would be to record fewer
sures are required to achieve an acceptable SNR in eadmages of the breast, but at increased angular spacing, such

B. Angular sampling of images
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that the angular range is 360flustrated in Fig. 2b)]. Itis  projections need to be made at large angles than at small
plausible that the use of added constraints and iterative metlangles(images close to thXY plane in which high resolu-
ods would allow calculation of a full-resolution 3D recon- tion is requiredl. Thus for our purpose it is advantageous to
struction of the breast with quality equivalent to that derived(a) cluster most views neaf=0, and (b) to decrease the
from Fig. 2a). A related approach is to image the breast withexposure for images recorded at large valueg. dhis strat-

a nonuniform angular spacirdrig. 2(c)], or with a limited egy utilizes the total dose more effectively than using a con-
angular rang@Fig. 2(d)]. In the latter two cases, the resultant stant dose per image and/or collecting projections at uniform
3D reconstructions will have anisotropic resolution, with bet-angular increments.

ter resolution in theXY plane than in theZ direction. Ex-

ample images obtained using these approaches are presengdreast geometry

in the following. .
9 Because we are not relying on only two orthogonal pro-

jections to resolve feature overlap, breast compression will
not be as critical a factor in our method as it is in standard
Variation in the spatial resolution in the projection datamammography. It is also clear that with significant breast
from one view to another can be achieved by decreasing theompression, information content in projections at large
detector resolution as the gantry arm is rotated away from thangles will be considerably reduced because of the long
Z axis. The region of frequency space sampled has the form-ray path length and consequent high attenuation. We have
shown in Fig. 2e). The example shows projection images not done detailed studies of how much breast compression is
obtained with the gantry in the horizontaXY) plane col- optimum, but we anticipate that in most cases it will be less
lected at approximately 1/2 of those obtained with the gantrjthan for standard mammography.
in the vertical position. Resolution is gradually changed as
the gantry is rotated, resulting in the gradually changing cutf. Reconstruction techniques

off frequency in the resulting central slicgsig. 2(€)]. If the Considerable effort has gone into the development of it-

in-plane resolution XY) of the projection images with the . . )
N : erative techniques for reconstructions that use a small num-
gantry vertical is 0.1 mm, this corresponds roughly to a re-

constructed resolution of0.2 mm in the verticalZ) direc- ber of projection images which have low SNRs. Historically,

. . . . . ._iterative methods have not been used in commercial x-ray
tion. If instead of the illustrated resolution ratio of 1/2, a ratio h b h ionall
of 1/10 were usedwith in-plane resolution of 0.1 mjma 3D ftomog_rap Y systems ecause they are computatlon_a y

. o e intensive' ! |terative methods have found application in
map with ~1 mm resolution in theZ direction would be

generated. Compared to the example in Fig),21/5 of the nuclear medicine techniques like PET, where the data sets

dose and approximately 1/2 the number of imades would bare sparse, the projection matrix size is smaller, angular sam-
. P y e . rotimag . Eling is less, and there is a large statistical uncertainty be-
required, giving a reduction in the imaging time of approxi-

mately tenfold. Figures @) and Zh illustrate a combined cause relatively few photons contribute to the projection im-

) . .ages compared to transmission CT. Recent improvements in
approach where nonuniform angular sampling and nonuni; ; . .
. . . ._the capacity and speed of computers, coupled with the wider
form spatial sampling are both used. Nonuniform spatial - . . . .
O . _— . . application of image data, have led to iterative techniques
sampling is accomplished by binning pixdlsumming the . S . 14-21
. . . ; becoming popular in image restoration problems!
signals from an integral number of pixels before signal read-

out, as described in the followingso for an actual measure- These techniques can be adapted for our problem: jow-dose
ment the length of a radial line in Figs(€—2(h) will de- (i.e., low SNR projection data, and anisotropic angular sam-

pend on the binning factor, and correspond to the NyquisP“ng'

frequency for the projection data viewed along that particular We have used the maximum likelihood expectation maxi-
dirgctiony Proj 9 P mization (ML-EM) algorithm®® This algorithm is not opti-

mal with respect to speed of convergence or computation

cost, but it is suited to demonstrating the method and com-

paring data-collection schemes. Rather than introduce addi-

tional complexity to the interpretation of our results, we
Uniform angular spacing and equal exposure per imagehose this well-known and well-understood algorithm, and

would be optimum if one were attempting to obtain uniform also chose to employ as few additional constraints as pos-

spatial resolution in 3D and the breast were of a symmetricasible.

shape. However, we are not attempting to obtain uniform

resolution in 3D, but instead are attempting to limit the ra-11l. METHODS

diation dose by using a limited number of views. Because w% Detectors

require high resolution in only two dimensio andY), we :

need less information about feature detail in the thidl Due to practical considerations regarding available equip-

dimension. Thus for images made at large anglge val- ment, two different acquisition geometries were used for the

ues of ), the dose per projectiofimage information con- studies discussed here. They are depicted in Figs.dnd

ten) can be reduced without significantly degrading thel(b), respectively. Two types of digital detectors were used in

quality of the 3D reconstruction. For the same reason, fewethese studies: a CCD-based detect®veloped at Brandeis

C. Spatial resolution of images

D. Exposure per projection and distribution of
projections
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University, Waltham, MA for phantom imaging, and the image collection software, enabling multiple images to be
G.E. (GE Medical Systems, Milwaukee, Wflat-panel Csl  recorded at selected angular increments over a chosen angu-
amorphous silicon detector for mastectomy specimen and pdar range. The stage axis and detector were aligned so that
tient imaging. Both detectors have fast readout speeds, lothe imaging surface is perpendicular to the line between the
dark current(thermal noisg and low readout noise. center of the imaging surface and the source, and the stage

The CCD-based detector has aXiID cm area, 1000 axis is parallel to the imaging surface. We thereby could
X 1000 0.10 mm pixelgdigitized to 16 bit}, a G40O,S:Tb  simulate the cone-beam geometry that would be used for
phosphor, a 4.0:1 demagnifying fiber optic taper, 1.5 s readmammography, but had the convenience of rotating the
out time,>10000:1 dynamic range, readout noise of 2 x-raysample rather than the source and detector.
photons/pixel, and variable spatial resoluti@m-chip pixel Two series of measurements were carried out in order to
binning).?? Binning on the CCD allows the signal in an area show how reconstructions of the simulated microcalcifica-
of nXm pixels to be summed prior to readout and then readions differ for three different image-acquisition protocols
out as one number. The noise associated with each pixel ishen the total dose is comparable to that in a standard mam-
composed primarily of two components: read ndiassoci- mographic study. These two measurement series consisted of
ated with reading out a pixehnd dark noisdthermally in- a 17-image data set and a 51-image data set. The kVp was
duced fluctuations of chargeBecause only one read opera- held fixed at 25 kV, the milliampere-secon@fsAs) values
tion is required to read the combined pixels, the readout timevere ~85 and~255 mAs, respectively, and the source-to-
is reduced by a factor of-nm and the spatial resolution is detector distance was 130 cm. The corresponding entrance
reduced in both directions. Low dark currefthe CCD is  exposures were-330 mR (17-image se¢tand ~1000 mR
cooled to reduce dark currgnand short integration times (51-image set To put this in perspective, the single view
keep the dark noise low relative to the readout noise. Thereentrance exposure to a 4.5 cm breast in screen—film mam-
fore the total noise is dominated by the read noise, and thenography using an Mo/Mo target/filter combination and 25
noise per binned pixel is only slightly greater than the singlekVp is typically ~800 to 1200 mR. Details of the measure-
pixel readout noise. Relative to a detector without binningments are given in Table I.
the read noise per pixel is lower byif)*/2.

The GE tomosynthesis prototype mammography detector
incorporates a thallium-doped Csl scintillator coupled to an
amorphous silicon photodiode array of 18804 detector
elements that are 0.10 mm in pitch. The pixel array is rea
out and digitized to 12 bits in 300 ms by low-noise electron-  Two mastectomy samples were imaged with the G.E. flat
ics designed for low-dose imaging. The imager is integrateghanel detector and a Rh/Rh target/filter x-ray source, focal
into a full field digital mammography tomosynthesis proto- spot size 0.3 mm, without a scatter reduction gidicky).
type systent In this prototype detector, it was not possible The specimens were mounted between a standard compres-
to bin pixels before readout. sion paddle and the breast support surface, 2 cm above the
detector imaging surface in the horizontal plane. The speci-
men and detectofsource-detector distane®6 cm) were
stationary and the source was rotated. For the first mastec-

A stereotactic needle-biopsy tissue-equivalent breasiomy sample(Figs. 6 and ¥, the imaging protocol used 9
phantom(Nuclear Associates, Carle Place, NY, model 18—projection images acquired at 5° increments frera0° to
228 was used to compare data-collection strategies. A 5-cm20°, with a total exposuréntegrated over the 9 imagesf
thick section of the phantom was sandwiched between twd5 mAs at 25 kVp, corresponding to an entrance exposure of
flat carbon fiber/epoxy plates. The section contained low266 mR. The data-collection scheme corresponds to that
contrast spherical features 5—8 mm in diameter, and a clustshown in Fig. 2d), except that even though the detector
of higher-contrast featuretimulated micro-calcifications resolution was fixedat 0.10 mn), because the detector is
each<1 mm in diameter. Although this phantom has low stationary the effective resolution varies with viewing angle.
X-ray contrast targetgexcept for the simulated calcifica- The result is that the area of frequency space that is sampled
tions), the images are easy to interpret because there is littlhas an oblate shape, rather than the circular shape shown in
overlapping structure and low background structure noise. Fig. 2(d). For the second mastectomy sam(iegs. 8 and 9

The geometry used for imaging the phantom differed1l projection images were acquired at 5° increments from
somewhat from the geometry used for the patient and mas-25° to 25°, using a technique of 140 mAs and 30 kVp,
tectomy sample imaging. The source and detector were st@orresponding to a total entrance expos(integrated over
tionary, and the phantom was rotated. The apparatus comhe 11 imagesof 1735 mR. A data set was collected for the
sisted of a continuous-output rotating-anode x-ray generatanastectomy sample with the 7-mm-thick feature-containing
with a 0.2 mm focal spot, Mo/Mo target/filter, computer- wax insert from an ACR phantorfGammex RMI, Middle-
controlled x-ray shutter, and computer-controlled rotationton, WI, Model 156 positioned between the detector and the
stage on which the phantom was mounted 110 cm from thenastectomy sample. Single projection images of the phan-
source, with a 20 cm air gap between the phantom and theam alone, and the phantom plus mastectomy sample, were
detector. Both the stage and shutter were controlled by thalso made with the same total entrance exposure.

é:. Mastectomy images

B. Phantom images
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TaBLE |. Details of the data-collection protocols used for the images in Fig. 5. Exposures were made using a
Mo/Mo target/filter combination, 25 kVp, source-to-phantom entrance surface distah@ecm.

17-image data set

Angular Number Step Image
range of between exposure Binning Total entrance
Method From...To images images (mAs) factor exposuremR)
LA —17°--17° 17 2.1° 5 1 330
WA —86°%--86° 17 10.8° 5 1 330
NWA
—86°, 86° 1,1 3 8
—76°, 76° 1,1 3 8
—65°, 65° 1,1 3 8
—54°, 54° 1,1 3 8
—43°, 43° 1,1 3 4
—32°, 32° 1,1 6 2
—22°, 22° 11 6 2
—11°, 11° 1,1 12 1
0° 1 12 1 340
51-image data set
LA —18%--18° 51 0.7° 5 1 980
WA —90*--90° 51 3.5° 5 1 980
NWA —90°--—50° 12 3.5° 3 8
—47°--—36° 4 3.5° 3 4
—32%--—18° 5 3.5° 6 2
—14°-.14° 9 3.5° 12 1
18*--32° 5 3.5° 6 2
36%--47° 4 3.5° 3 4
50%--90° 12 3.5° 3 8 1010
500-image FBP data set
FBP —180%--180° 500 0.72° 36 1 77210
D. Patient images The solution is the reconstruction model that maximizes the

More than 250 patients have been imaged under IRB anI’Obablhty of getting the measured projections. Because an

proval following informed consent. The images from the tWoanalytical solution to ML is usually intractable, iterative al-
patients presented here were acc-]uired with the same geoﬁqgrithms are generally used. If the incident and transmitted
etry as that used for the mastectomy samples. For ea%ir%‘cg follow Poisson statistics, the likelihood is described
breast, 11 images were acquired in a total tirh& s as the

source was rotated in 5° increments over a 50° angular range. c—

The exposure times were0.1 s and the time to move the ROA

source(during which time the image was read putas 0.6 s. L= H {Pi(Yi|u)}= H v 2
Medio-lateral obliqueMLO) positioning was utilized, with

a Rh/Rh target/filter combination, and te.chnique factors of The likelihood associated with the measurement of each
28 kvp and 10 mAs per exposure for patient 1, and 30 kVpdetector pixel isP;(Y|u), and the multiplication is over all
and 13 mAs per exposure for patient 2. The mean glandulalgixels Y, is the measured number of x-ray photons in the
dose (integrated over the 11 exposureasas 307 mrad for | e o . —
patier(n 1%;1nd 382 mrad for patli)ent )2 The mean glandula‘mage at projection pixél In our reconstruction problen
dose in a conventional mammogram for patient 1, recordeﬁlorreftpondf_ to thedgjalculated number of photons based on
with a Mo/Mo target/filter combination at 25 kVp, was 330 € atienuation moag,

mrad (per exposure

Y, =D;e" Q)

E. Reconstruction methods
i ielin is o family of | ) is the mean number of photons in the pixg|;is the number
Maximum Likelihood(ML) is a family of iterative recon- ¢ inident x-ray photons at projection pixebefore attenu-
struction method§ The'gbjectwe 1S the I|keI|hooq function ation; (I,u); == l;u; is the total attenuation along the beam
L, which is the probability of getting the projectiofsob- oy 45 piveli: andl;; is the intersection length of beam ray
tame_d_ln the experiment, given a 3D model of attenuation, 14 the model voxdl. P,(Y|u) describes the Poisson prob-
coefficientsu: ability of the measured number of x-ray photoriswith the

L=P(Y|u). (1) mean calculated pixel valié. The log likelihood is theh
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model and improves it incrementally in the maximum likeli-
InL=2) (=Dje”"“i=Yi(l,u)+Y;InD;=In(Y;!)). hood direction. In order for the iteration not to converge to a
' local optimum, the reconstruction problem has to be “con-
4 , . :
vex,” that is, there are no models that cannot be incremen-
The assumption implicit in this formalism is that the re- a)ly improved (no local maxima In this case the iteration
corded intensity is related to the log of the integral of theprocess will always approach an “answerShepp and
attenuation along the path. This assumption is not strictly/ardi28 showed the ML reconstruction problem to be “con-
true becausea) there is scatter an() the x-ray beam is not yex” in the case of emission tomography, Lange and co-
monochromatic. In fact, scatter may account for a significan{yorkers showed the transmission tomography case to be
portion of the recorded signal, particularly in highly attenu-«conyvex,” 113 although constraints could affect this conclu-
ating regions. These effects are ignored in the algorithm wgjop). We do not iterate to convergence, so the ML model
use here, and we do not investigate the effect of scatter angself js not reached. The path which the algorithm takes is
beam hardening in this report. There is also an uncertaintyherefore important, as is number of iterations before stop-
introduced in the measured value 6f due to the fact that ping the algorithm.
our detectors are integrating detectors, not photon counters, additional information can be used to constrain the solu-
but this uncertainty is small compared to the uncertainty dugjgn and produce a more meaningful reconstruction. To apply
to photon counting statistics for these measurements. Scattgpnstraints, a term is added to the objective function:
and beam hardening are the dominate causes of the error in
the measurement of transmitted photéns. P(u)=logL(u)+AV(u), 5)
The transmitted x-rays collected by the detector are “in-
complete information” about the attenuation coefficient of whereP(u) is the new objective functior\/(u) is the con-
image voxels along the beam ray. This makes it difficult tostraint function, and\ regulates the strength of the con-
solve the ML equations using conventional approaches bestraint. The solution maximizes the objective funct®fu).
cause these methods, such as the gradient-based nfethodVe use two constraints, non-negativity and a maximum at-
will lead to a large number of insoluble simultaneous equatenuation coefficient (&u=<1cm ). Other constraints
tions. The expectation maximizati¢BM) algorithm embeds typically affect the appearance of the reconstruction. For ex-
the observed “incomplete dataY into a larger unobserved ample, a constraint on the pixel-to-pixel fluctuation in the
“complete data” space. For a single projection data pixelreconstruction can reduce noise, but will also reduce spatial
from the “incomplete” (but observell data spaceY, this  resolution.
complete data space consists of the unobservable x-ray Inour implementation of the ML-EM reconstruction tech-
counts leaving each voxel along the beam ray from thenique of Lange and Fessltthe attenuation coefficients in

source to the projection image pixel the model were updated with the following:
{X0: X1, X2, - Xm—1,Xml Xm=Y}. In this “complete data” 1) .
space it is simpler to find the solution to ME?’Because the Ui =ur AU, ©

“complete data” are not known, the EM algorithm uses their
expectation based on the current estimate of the model. . u}“)EiIij(Die‘“'“(n))i—Yi)

There are two steps at each iteration of the EM algorithm: AU}~ = (1( u(”)>-D-e*<'v“(")>i) : (7)
an expectation stefE-step and a maximization stefM- A e
step. In_ the E?step, the f‘complete data_" are estimated by  The numerator of the voxel updatey; is proportional to
calculating their expectation, given the “incomplete da¥@”  the attenuation in the voxel, thus the update is multiplicative.
and the current model™. In the M-step, the log-likelihood (A zero in a voxel will never change, and should be avoided
function of the “complete data” is maximized, assuming the yhen initializing the model. The summed expression in the
estimated “complete data” from the E-step are correct. The,ymerator represents the backprojection of the difference be-
log-likelihood function based on expectation of “complete yyeen the expected intensitp(e ") and the observed

data” is represented by the functig@(ulu‘™), intensity Y;, in the projection images. This “error term” is
E-step: computeQ(u|u™) using Y and u™. backprojected into the voxel by multiplying by (the inter-
section of each projection ray with the voxel being updated
M-step: find u™*Y=argmaxQ(u|u™)}. This error is weighted by the factor in the denominator,

which provides the minimum expected error under the as-
Iterative execution of these steps leads to the moditlat  sumption of Poisson noise in the observed projections. We
maximizes the likelihood function of the measured “incom- did not find it necessary to go beyond the classic implemen-
plete data.” In effect, the EM algorithm reduces the com-tation of Lange and Fessl&tdespite there being significant
plexity of solving the log-likelihood function by replacing it deviations from the assumptions under which they derived
with Q(u|u(™). The ML method asks for the model that the algorithm.
would give the observed data with the highest probability. The contribution to the voxel update from each projection
This is hard to evaluate directly without testing all possibleis proportional to the number of incident x-ray photdds.
models. The EM approach asks for the maximization of thdn imaging the phantom, the number of incident x-ray pho-
function Q given a current model. This takes the currenttons varied with angle. At each angle, the bare-beam inten-
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X=2.2cm Z=2 4cm uniform, wide-angle sampling is a compromise that yields
moderate resolution in théZ plane while maintaining good
image quality in theXY plane. All of these sampling proto-
cols result in the ability to visualize the location of features
in 3D.

Figure 5 shows reconstructed 1-mme-thick layers in the
XY plane at ¥Z-axis levels for the area around the simulated
microcalcifications. Her& resolution is most easily visual-
ized by looking at the structure artifacts evident in e
=13 mm layers, where there are in fact no simulated micro-

calcifications in the phantom. Judging from Fig. 5, limited
X 2 angle samplingLA) results in good resolution of detail in
the plane, but poor resolution i Uniform wide angle sam-
Fic. 3. Two orthogonal projection views of the phantom made at 25 keV,pling (WA) results in reduction in the in-plan&{) resolu-
Mo/Mo, 110 cm source-to-phantom, 130 cm source-to-detectgr, 400 mAgjon, and good resolution id. Nonuniform wide angle sam-
(équivalent to 100 mAs at 65 cm source-to-detgctane of the simulated i o (NWA) with nonuniform exposures and binning results
masses is obscured by another in ¥ view. The arrows indicate the . . .
location of the layers shown in Fig. 4. in resolution in theXY plane that appears nearly as good as
that for limited angle sampling, and in relatively good reso-
lution in Z. For the lower dose series, these differences are
sity was measured in an area outside of the object shadownore pronounced.

and used a®; at this angle in Eq(7).

V. RESULTS B. Mastectomy images

Images of a mastectomy specimen are show in Fig. 6. The
figure demonstrates one way in which a low-dose 3D data set
A phantom designed for teaching stereotactic needle biean be processed to increase the conspicuity of microcalcifi-
opsy is used to illustrate methods for collecting multiple- cations over that provided by a single transmission mammo-
image data. Two orthogonal projection views of the phantongram. Figure €) shows the low-dose transmission image
are shown in Fig. 3. The simulated microcalcifications arerecorded at 0°. From the 3D attenuation distribution recon-
visible at the right center of Fig.(8). structed from the 9 images in the data set, the maximum
The schemes presented in Fig. 4 illustrate alternativéntensity projection(MIP) at 0° and the mean intensity pro-
image-collection strategies. The two right columns of Fig. 4jection at 0° were calculated at every pixel position. The
show 2-mm-thick slices in two orthogonal directions from difference between the two imagédIP minus mean inten-
ML-EM 3D reconstructions based on 3 different data-sity projection is shown in Fig. €).
collection protocolgrows 1-3, and the same layers calcu-  Three 2-mm-thick slices in aX44 cm area of the recon-
lated from a FBP reconstruction from 500 equally spacedstruction are shown in Fig. 7. Eight iterations were used. One
equal-exposure images made over 36@tv 4). The 500- hundred 0.4-mm-thick slices parallel to tier plane were
image set is included in order to generate “truth” images forcalculated in the reconstruction; these were subsequently
comparison with the lower-dose images. The drawing in théinned in groups of 5 to give twenty 2-mm-thick slices. The
left-hand column represents the source and detector positiomdfective pixel size in the image plane is 0.10 mm. Features
and the relative entrance exposure per projection the are clearly separated into different vertical layers with a
actual measurements the sample was rojated depth resolution of 2 mm. The calcifications due to high-
The area of theXY plane shown in Fig. 4 contains one grade ductal carcinoman situ delineate a segment of the
simulated mass sphere and simulated microcalcificationsluctal network of the breast. Some of the microcalcifications
[The edge of a second sphere is just visible in this plane, Figobserved in theZ=28 mm layer appear to be localized
4(d)]. The orthogonalY Z plane contains two spheres that within the layer and are not visible in the adjacent
overlap one another in theY plane. Comparison of the four =30 mm layer, while others are either spatially extended or
XY andZY images illustrates some of the tradeoffs associdocated near the boundary between layers. At the
ated with the each protocol. The limited-angle reconstruction=36 mm layer, no microcalcifications are apparent.
results in good image quality in theY plane, but poor reso- The results of the phantom plus mastectomy imaging ex-
lution in the Y Z plane. The uniform wide-angle sampling periment shown in Fig. 8 demonstrate how the method can
results in improved resolution in th¥Z plane, but close remove overlapping structure to reveal features in a layer. In
inspection shows that image quality in tk& plane is some- the 0° projection imagégFig. 8(b)], features in the phantom
what degraded, as judged by the loss of detail in the calcifiare difficult to visualize due to structure in the mastectomy
cations and the increase in noise. The uniform wide anglsample. Only the highest-contrast cluster is obvious. In the
sampling protocol provides the be&t resolution because reconstructed phantom laygFig. 8c)], the structure noise
more views are obtained where the angle between the plarad the mastectomy sample is removed and many of the phan-
of the detector surface and tiveZ plane is small. The non- tom features can be seen, although reconstruction artifacts

A. Phantom images
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a LIMITED ANGLE SAMPLING

DOSE/VIEW -] » 1.0
T e

SOURCE ANGLE:---» m

Y

OBJECT R ?—» X

z

DETECTOR ANGLE-» w

Fic. 4. Image acquisition protocols for
3D imaging of the phantom(a) lim-
ited angle sampling(b) uniform wide
angle samplingfc) nonuniform wide
angle sampling;(d) 500-image uni-
form sampling over 360°. Fa@), (b),
and (c), images were collected at the
angles and relative entrance exposures
indicated in the drawings in the left-
most column; the total entrance expo-
sure in each of the 3 data sets was to
1800 mAs at 25 keV, Mo/Mo, 110 cm
source-to-phantom distance, corre-
sponding to a total entrance exposure
of 6.9 R. In(a) 9 images 5.4° apart
were used(corresponding to the ge-
ometry used for the mastectomy im-
ages; in (b) 15 images 12.6° apart
were used; inc) 15 images at differ-
ent angles, exposures and binning fac-
tors were used; ifid) 500 images were
used resulting in a total entrance expo-
sure of 77 R. In the coordinate system
shown, theY axis is vertical and the
detector imaging plane is normal to
the Z axis at 0°. Two orthogonal
2-mm-thick layers through the recon-
structions are shown for each sam-
pling protocol. The layers are located
at the X and Z depth positions indi-
cated by the arrows in Fig. 3. The
brightness and contrast of the images
displayed have been manipulated in
order to show details in this inherently
low-contrast phantom.

b UNIFORM WIDE ANGLE SAMPLING

d  UNIFORM WIDE ANGLE SAMPLING
(500 VIEWS)
0.2

from features in the mastectomy sample still obscure lowdar shapg so the values of pixels adjacent to the central pixel
contrast features in the phantom. were generally considerably lower. The relative variance of
For the reconstructed layer, the contrast, the variance ithe backgroundFig. 9a)] was evaluated for a 100100
the background«?), and the differential signal-to-noise ra- pixel area of the image slice of the phantpwax insert, Fig.
tio (SNR), were measured as a function of the number of8(c)] in which we assume the attenuation is uniform. The
iterations. The contrast = (Nyeawure~ Nbackground/Nbackground average SNR for the 3 sets of simulated calcifications and for
whereN is the average attenuation value. For the calcificathe largest simulated mass visible in the phanféig. 8a)]
tions, the maximum pixel value in each feature was used tovere calculated by evaluating SNRNseature
calculateN¢ear,re. The maximum pixel value was used, even — Npacground/ - As shown in Fig. &), for a small number
though noise is introduced by selecting only one pixel valuepf iterations, the contrast of a relatively large, low-density
because the calcifications are sniall the reconstructed im- feature(mass increases faster than the contrast of a smaller,
age a calcification consists 6f10 voxels and has an irregu- high-density featurdcalcification). For the mass, the SNR
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RECONSTRUCTION FROM 17 IMAGES

RECONSTRUCTION FROM 51 IMAGES

- -

WA Fic. 6. (a) Low-dose projection image recorded at 0° from a<1@x4 cm
mastectomy specimerib) Difference between the 0° maximum intensity
projection and the 0° mean intensity projection images derived from the
reconstruction. The relative brightness and contrast have been adjusted to
enhance features of interest.

[Fig. 9c)] does not increase after 3 iterations because high-
frequency noise present in the data is overfit by the algo-
rithm. With further iterations, the magnitude of the amplified

noise increases faster than the improvement in feature con-
trast and the SNR decreases. The amplification of noise is a

FBP RECONSTRUCTION FROM 500 IMAGES characteristic of nonregularized algorithms such as the

ML-EM algorithm. We chose the ML-EM algorithm for this
FBP study because it is well-known and well-understood,; in clini-
cal use some form of regularization could be used to sup-
press noisé>?%3°The results correspond to our qualitative
assessment that the conspicuity of most features in the recon-
structed layers of mammograms is optimized by 8—10 itera-

tions. Although the contrast and SNR are measured numbers,
Z=13mm Z=16mm Z=17mm S .
the curves in Fig. 9 are smooth because they are given by a
deterministic calculation, and therefore do not reflect the er-

ror in the reconstructed image due artifacts caused by out-of-

Fic. 5. Simulated microcalcifications in 1-mm-thick density layers recon-
structed from phantom images collected with the sampling schemes detalléalane structures. Since the phantom is uniform, the error in
in Table I: limited-angle samplingLA); wide-angle samplingWA); non-  the reconstruction is reflected by the increase in the back-
uniform wide-angle samplingNWA); and filtered backprojectiofFBP). round variance. Figure 9 is presented to demonstrate the
Layers at 13, 16, and 17 mm from the phantom surface are shown for eatgonvergence behavior of the algonthm for small and |arge
of the sampling schemes. Each data set in the first series of image Iayef
consisted of 17 exposures with a total entrance expasuma of 17 radio- eatures; a different phantom and sample would glve differ-
graphs of ~330 mR. In the second series of images, there are 51 exposuregnt values for contrast and SNR, but the general features of
with a total entrance exposure 6980 mR. the curves would be repeated.
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Fic. 7. Reconstructed density layers of &4l cm area of the 4-cm-thick
mastectomy specimen shown in Fig. 6, using the same 9-image data set.
Layers 2 mm thick at 28, 30, and 36 mm levelsZirare shown.

C. Patient images

The patient whose images are shown in Fig. 10 was found
to have a nonpalpable 10 mm invasive ductal cancer with

associatedn situ tumor. Blood vessels are visible near the F& & (2 Projection image of the wax insert from an ACR breast phantom.
(b) Projection image of the wax insert positioned undér&cm-thick mas-

breast surface in layef@). A tumor that has intraductal as tectomy sample(c) 2-mm-thick density layer reconstructed from the 11-
well as invasive ductal cancer elements is just out of theémage data set of the phantom/mastectomy sample.
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0.05 tures that are clearly visible at levéd) are not present at
level (b), demonstrating the separation into layers that en-
0.04 1 hances the conspicuity of features. In Fig. 1&Rthe higher
voxel value at the periphery of the lesion in the same plane
indicates a fatty central region. This suggests that the lesion
is not malignant, since a malignant lesion would have a more
dense central region. Preliminary analysis also suggests that
the conspicuity of the calcifications is markedly increased.
In some of the reconstructed images, artifacts caused by
high-contrast features arise because of the limited number of
0 10 20 20 © 50 projections used for reconstruction. Metal clips produce the
(a) NUMBER OF ITERATIONS artifacts shown in the upper-right and lower-right of Fig.
8(c); calcifications produce the artifacts shown at the center
0.05 02 left of image Fig. 11 Ib); and uncorrected bad pixels pro-
duce the 6 dark dots on the top right of images Fig. 14 L
and L(b). These artifacts can be recognized because they are
discrete, repetitive ghost features aligned along the x-ray tra-
jectory and they converge to a true high contrast feature in
one image plane.

0.03 1

0.02 1

BACKGROUND VARIANCE

0.01

0.04 - MASS [ 0.16

0.03 - - 0.12

CONTRAST OF MASS

0.01 F 0.04

CALCIFICATION V. DISCUSSION

CONTRAST OF CALCIFICATIONS

0 . . . . 0 The straightforward technique of processing the 3D at-

0 10 20 30 40 50 tenuation information at each voxel illustrated in Fig. 6 pro-
{b) NUMBER OF ITERATIONS vides diagnostically useful information that cannot be ex-
tracted from two standardMLO, CC) mammography
images. The reconstructed density layers from a mastectomy
! specimen and two patient&igs. 7, 8, 10, and J1demon-
strate that 3D reconstructions from a limited number of low-
dose x-ray images are useful for detecting features in three
dimensions, and thus can resolve ambiguities which may
arise from the overlap of structures in standard two-view
projection mammography.

For the patient studies, the 11 exposures were equally
spaced over 50°. The finite size of the detector and use of full
breast compression limited the angular range. Data-

o 1o 2 a0 0 50 collection schemes that allow both the detector and source to
(© NUMBER OF ITERATIONS rotate, similar to those we have presented for imaging the
phantom, may lead to improvement of the technique for

mass and simulated calcifications in the reconstructed layer shown in Fi pereening and d|agnost|c mammography. These schemes

8(c). In (a), artifacts caused by features in the mastectomy sample contribugl;\’omd_use a speC|aI_|zed gantry and incorporate Wld_er-angle
to the background variance. The standard deviation in the average baclsampling and nonuniform entrance exposure, nonuniform an-

ground intensity is<3% at 10 iterations anek4% at 50 iterations. gu|ar Spacing’ and possib|y variable-resolution |maghng_
ning).

Only that volume of the breast that is illuminated from all
plane of layer(b). The invasive tumor mas&rrow) with angles can be reconstructed. Although we have not yet ex-
associated calcifications in the situ portion is clearly seen perimented with large angléreater than 25°views in a
in layer (c), as is a benign, intramammary lymph node in theclinical context, we anticipate few if any problems associated
upper portion of the image. The cancer is difficult to see inwith obstruction of structures near the chest wall. Patients
the conventional screening mammogrgfiim/screen tech-  will likely be positioned as in a standard cranio-caudal view,
nique, Fig. 10d)], and was found primarily because the cal-so even at large viewing angle their arms and shoulders
cifications associated with it drew the attention of the radi-would not be in the x-ray beam. A thin barrier between the
ologist. patient’'s abdomen and the detector would assure that detec-

Figure 11 shows 5-mm-thick MLO reconstructed layers attor motion would not result in patient motion. Introduction of
two levels separated by 14 mm in each breast of patient Zhe thin barrier would result in the loss of a small amount of
Images lta) and Ra) show areas of architectural distortion imaged tissue near the chest wall. Depending on the relative
in the plane of sections from previous breast biopsies. Fegosition of the patient and the detector, the nonimaging

1.5 6

/ MASS

12 4

0.9 1

0.6 1 CALCIFICATIONS

SNR OF MASS
SNR OF CALCIFICATIONS

1.5
0.3 1

Fic. 9. (a) Variance in the backgroun¢b) Contrast andc) SNR of the large
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Fic. 10. (a), (b), and(c): Reconstructed layers of density at 3 levels obtained from mediolateral oblique projection images from a v(gatiesgr). Each
reconstructed layer is 2 mm thick. The layers arga@t2 mm, (b) 22 mm, and(c) 32 mm from the breast surfa¢eompression paddigand the compressed

breast thickness was 5 cm. A corresponding area from the digitized screening mammogram of the same patient, recorded with film/screen, Mo/Nbo, 25 kV, 33
mrad mean glandular dose, is shown(d.

frame of the detector could also obscure the image near th&truction algorithm.
chest wall. Since high-frequency noise in the data is amplified by
We have not endeavored to determine the minimum numeach iteration of the reconstruction algorithm, fewer itera-
ber of views required to provide sufficierf resolution. tions may be optimum for the detection of low contrast ob-
Many factors would be involved in making that determina-jects such as small masses. However, the conspicuity of a
tion, including the dose limit, the angular range over whichlow-contrast feature will in part depend on the detection of
projections are acquired, the amount of compression, ththe feature’s edges, and this will involve higher-frequency
x-ray energy, characteristics of the detector, and the recorinformation. Curves such as those in Fig. 9 cannot by them-
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Fic. 11. Images of 5-mm-thick layers from reconstructions of the(lefiand right(R) breasts of a voluntedpatient 2. The compressed breast thickness was
6 cm. The layers are at levels(d) 28 mm; L(b) 42 mm; Ra), 16 mm; Rb), 30 mm from the breast surfa¢eompression paddieFigures l(b) and Rb) are
layers away from the sections containing the scars.

selves answer the question of what is the optimum number adge quality. The optimum number would be best determined
iterations. Our experience with250 patient case®00 im- by a controlled multi-reader study.

ages of left or right breastasing a nonregularizedML- For the patient imaging studies, there was no air gap be-
EM) algorithm has been that most features are visible after &veen the detector and the breast. An air gap could be used to
or 3 iterations; details such as tumor edges are conspicuousduce scatter if the detector is rotated with the source. Wu
after 2 or 3 more iterations. Radiologists have found thahas shown in simulated mammography experiments that in-
8—10 iterations generally give reconstructed images wittcreasing the scatter-to-primary ratio by a factor of 2 de-
sufficient feature contrast and detail, and that increasing thereased the signal-to-noise in the reconstruction by roughly a
number of iterations much beyond 10 does not improve imfactor of 22 Although we have not done it here, scatter mod-
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eling can be included in the computation of the forward pro- _ 25
jection data®l~3 Despite the considerable contribution of
scatter to the projection images, we found that we could
successfully apply the ML-EM algorithm.

When collecting images for 3D reconstruction, some form g
of breast stabilization is essential to keep the breast stationZ
ary. However, if images are to be recorded over a wide ranges
of angles, full compression may not be required or even op-<
timal. X-ray attenuation through the long axis of a fully com-
pressed breast is too high to allow low-dose wide-angle im-
aging (unless the x-ray energy is significantly higher than
that used for conventional mammographylthough we
have not studied the correlation between the amount of com-g
pression, the range of imaging angles, and the quality of the
reconstructed images, we anticipate that at least in some
cases, reduced compression will be practical. Even with re-
duced or minimal compression, resulting in a less flattenedfic. 12. Calculated signal-to-noise ratio in a 0.1 fpixel, plotted as a
breast shape, nonuniform angular sampling and/or varyin nction of kVp, for a 1% change in attenuation for 6,_8.4, and 10 cm x-ray
detector resolution may still be advantageous, because V\{éth lengths. The modeled flux at each energy is adjusted to keep the dose

nstant(30 mrad.
are looking for high resolution in thXY plane and lower
resolution inZ. Reduced compression would reduce patient
discomfort, and might encourage more women to be
screened routinely for breast cancer. multiple-view volumetric data sets with reasonable dose at

The x-ray energies used for conventional mammographyhe expense of spatial resolution. This technique is imple-
(Mo or Rh targets operated at 25—35 K\gre optimized for mented in a straightforward manner when using CCD-based
a configuration where the compressed breast is viewed aetectors, for which on-board binning is easily done. Use of
normal incidence and images are recorded with a screettlis approach with other detector technologies such as flat
film-based system. Since we are using a digital detector anganel detectors is less clear. The inherent structure of the flat
the images are processed rather than viewed directly, we apanel allows rows to be binnegy switching on multiple
more concerned with the information content of our imagesTFT rows simultaneous)y but columns cannot be binned
than with the appearance and contrast. We have modeled tldérectly. However, because we are most interested in binning
information contenSNR) as a function of energy at con- in only theZ dimension, this in itself is not a serious limita-
stant dose. Using the exponential relation between x-ray alifon. Because the dark noise is significantly less than the read
sorption and photon counf&qg. (3)] and the Poisson statis- noise in this detector for integration times 0.1 s, pixel
tics of x-ray detection, we have calculated the SNR for a 1%binning would result in reduced noise.
variation in tissue attenuation for different x-ray energies Image reconstruction routines must be relatively rapid if
(Fig. 12. The curves were generated by calculating the dif-these methods are to be used routinely. The ML-EM recon-
ference in the detected number of x-ray photons for a 1%truction calculations for the images in Fig. 1@000
change in attenuation at a given energy, then dividing the<1000x50 pixels, 8 iterationsrequired~2 h of computer
difference by the square root of the number of incident x-rajtime on a Pentium 900 MHz single-processor PC with 2
photons. The incident flux was adjusted to keep the dos&bytes of memory. We did not attempt to minimize the time.
constant at 30 mrad. The calculated values are scaled to ordgorithms more appropriate for clinical use would take ad-
measurement; the number of x-ray photons/pixel under thgantage of a computer cluster with multiple, faster CPUs,
breast and the number in the area outside of the breast, formecompute transformation matrices, and use faster-
6 cm breast at 30 kVp, Rh/Rh, at a 30 mrad do&e  converging techniques like Iterative  Coordinate
assume the attenuation is proportional (k¥p)® and the Descent*~3" These modifications should reduce computa-
detector is equally efficient at all energieFhis model is tion time by a factor of~100, allowing the reconstruction to
relatively crude; it does not include scatter, beam hardeningye calculated in minutes rather than hours.
or detector noise. The model does, however, illustrate that for The 3D reconstruction methods we have presented may
a given breast thickness there is an optimum x-ray energynake the radiologist’s detection and diagnosis of breast can-
below which the SNR falls off rapidly. The difference in the cer more accurate than would be possible with standard two-
peak locations of the curves plotted in Fig. 12 shows that foview projection mammography. Because the challenge of de-
a 6 cm compressed breast there is no single optimum enerdgcting cancer is greater for women and who have dense
for projections at both normal incidence and at 45°, and sugbreast tissue, the method could be of particular benefit to
gests that using voltages higher than those used for convegeunger women. In addition, the presentation of data in tis-
tional mammography will be advantageous when the x-raysue layers should simplify the tasks of feature recognition
path length increases beyords cm. and classification in computer aided diagnosis, because arti-

Utilization of pixel binning may be a useful way to obtain factual density arising from the superposition of overlapping
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independent features in conventional mammography will be method,”inThe Restoration of HST Images and Spectra Ill, Proceedings

reduced in the 3D reconstruction.

ACKNOWLEDGMENTS
This work was funded by the National Institutes of

of the Space Telescope Science InstjtBatimore MD, 18—19 Novem-
ber, 1993, edited by R. J. Hanisch and R. L. Whipace Telescope
Science Institute, Bethesda, MD, 1998p. 58—63.

18], Frank,Electron Tomography: Three Dimensional Imaging with the
Transmission Electron Microscog®lenum, New York, 1992

19E. U. Mumcuoglu, R. M. Leahy, Z. Zhou, and S. R. Cherry, “A phantom

Health, National Cancer Institute, Grant Nos. CA66232 and stdy of the quantitative behavior of Bayesian PET reconstruction meth-

CA69452, by U.S. Army Grant Nos. DAMD 17-98-8329 and
DAMD 97-1-7144.

aauthor to whom all correspondence should be addressed: electronic maily;

phillips@brandeis.edu
IR. A. Crowther, D. J. DeRosier, and A. Klug, “The reconstruction of a

three-dimensional structure from projections and its application to elec-,,

tron microscopy,” Proc. R. Soc. London, Ser.3A7, 319-340(1970.

2T. Wu, “Three dimensional mammography reconstruction using low dose

projection images,” Ph.D. thesis, Brandeis University, 2002.

3A. D. Maidment, E. F. Conant, S. A. Feig, C. W. Piccoli, and M. Albert,
“3-dimensional analysis of breast calcifications,” igital Mammogra-
phy '96, edited by K. Doi, M. L. Geiger, R. M. Nishikawa, and R. A.
Schmidt(Elsevier Science, Amsterdam, 1996p. 245—-250.

4L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E.

Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Gia-

rdino, R. M. Moore, D. Albagi, M. C. Delule, P. A. Fitzgerald, D. F.
Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E.
Possin, J. F. Richotte, C.-Y. Wei, and R. F. Wirth, “Digital tomosynthesis
in breast imaging,” Radiologp05 399—-406(1997).

5S. Suryanarnyannan, A. Karellas, S. Vedantham, S. J. Glick, C. J. Orsi
and R. L. Weber, “Comparison of contrast-detail characteristics of tomo-

synthetic reconstruction techniques for digital mammography,” Radiol-
ogy 213 368-369(1999.

6A. Kak and M. SlaneyPrinciples of Computerized Tomographic Imaging
(IEEE, New York, 1988

"B. S. Schaller, T. Flohr, K. Klingenbeck, J. Krause, T. Fuchs, and W. A.
Kalender, “Spiral interpolation algorithm for multi-slice spiral CT. I.
Theory,” IEEE Trans. Med. Imaging9, 822—834(2000.

8D. Hui Hu, “Multi-slice helical CT: Scan and reconstruction,” Med.
Phys.26, 5-18(1999.

°R. M. Nishikawa and M. J. Yaffe, “Signal-to-noise properties of mam-
mographic film-screen systems,” Med. Phy®, 32—-39(1985.

oM. B. Williams, P. Simoni, L. Smilowitz, M. Stanton, and W. Phillips,
“Analysis of the detective quantum efficiency of a developmental detec-
tor for digital mammography,” Med. Phy26, 2273-22851999.

11K, Lange and R. Carson, “EM reconstruction algorithms for emission
and transmission tomography,” J. Comput. Assist. Tom8gi306—316
(1984.

124, M. Hudson and R. S. Larkin, “Accelerated image reconstruction using
ordered subsets of projection data,” IEEE Trans. Med. Imad®¢01—
609 (1999.

13K. Lange and J. Fessler, “Globally convergent algorithms for maximum
a posteriori transmission tomography,” IEEE Trans. Med. Imaging
1430-14381995.

ods,” IEEE Nucl. Sci. Symp. Med. Imaging Cor8, 1703-17071995.

20p, A, Jansson, “Modern constrained nonlinear methods,Daconvolu-

tion of Images and Spectradited by P. A. JanssofAcademic, New

York, 1997, pp. 107-181.

C. Kamphuis and F. Beekman, “Accelerated iterative transmission CT

reconstruction using ordered subsets convex algorithm,” IEEE Trans.

Med. Imaging7, 1101-11051998.

W. Phillips, M. Stanton, D. O’'Mara, Y. Li, |. Naday, and E. Westbrook,

“CCD-based detector for crystallographic applications using laboratory

x-ray sources,” Proc. SPIE009 133-138(1993.

23, Vedantham, A. Karellas, S. Suryanarayanan, D. Albagli, S. Han, E. J.
Tkaczyk, C. E. Landberg, B. Opsahl-Ong, P. R. Granfors, I. Levis, C. J.
D’Orsi, and R. E. Hendrick, “Full breast digital mammography with an
amorphous silicon-based flat panel detector: Physical characteristics of a
clinical prototype,” Med. Phys27, 558-567(2000.

2*M. G. Bulmer, Principles of StatisticsDover, New York, 196%, pp.
102-103.

A, Papoulis, Probability, Random Variables and Stochastic Processes
3rd ed.(McGraw—Hill, New York, 1991

26G. H. Golub and C. F. Van LoarMatrix Computation(John Hopkins
University Press, Baltimore, 1989

27A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” J. R. Stat. Soc. Ser. B.
Methodol.39, 1-3(1977.

28|, Shepp and Y. Vardi, “Maximum likelihood reconstruction for emission
tomography,” IEEE Trans. Med. Imaginigll-1, 113—-122(1982.

2D, Yu and J. Fessler, “Edge-preserving tomographic reconstruction with
nonlocal regularization,” IEEE Trans. Med. Imagingl, 159-173
(2002.

303. A. Delaney and Y. Bresler, “Globally convergent edge-preserving regu-
larized reconstruction: An application to limited-angle tomography,”
IEEE Trans. Image Process. 204—-221(1998.

31G. L. Zeng, C. Bai, and G. T. Gullberg, “A projector/backprojector with
slice-to-slice blurring for efficient three-dimensional scatter modeling,”
IEEE Trans. Med. Imaging8, 722—732(1999.

M. Endo, T. Tsunoo, and N. Nakamori, “Effect of scatter radiation on
image noise in cone-beam CT,” Proc. SP3E77, 514-521(2000.

3J. H. Siewerdsen and D. A. Jaffray, “Optimization of x-ray imaging ge-
ometry (with specific application to flat-panel cone-beam computed to-
mography,” Med. Phys27, 1903—19142000.

343, A. Fessler, “Statistical reconstruction methods for transmission tomog-
raphy,” in Handbook of Medical Imagingdited by M. Sonka and L. M.
Fitzpatrick (SPIE, Bellingham, WA, 2000 Vol. 2, pp. 1-70.

%K. D. Sauer, S. Borman, and C. A. Bouman, “Parallel computation of
sequential pixel updates in statistical tomographic reconstruction,” IEEE

144, Guan and R. Gordon, “Computed tomography using algebraic recon- Int. Conference Image Processiag93-96(1995.

struction technique$ARTSs) with different projection access schemes: A
comparison study under practical situations,” Phys. Med. Bid|.1727—
1743(1996.

153, Skilling and R. K. Bryan, “Maximum entropy image reconstruction:
general algorithm,” Mon. Not. R. Astron. So211, 111-124(1984.

16T, Herbert and R. Leahy, “A generalized EM algorithm for 3D Bayesian

38E. C. Frey, Z-W. Ju, and B. M. W. Tsui, “An investigation of two ap-
proximation methods for improving the speed of 3D iterative
reconstruction-based scatter compensation,Tlimee-dimensional Image
Reconstruction in Radiation and Nuclear Medicinedited by A.
Grangeat and J. L. Aman&luwer Academic, Amsterdam, 1986pp.
177-193.

reconstruction from Poisson data using Gibbs priors,” IEEE Trans. Med. *'J. A. Fessler, E. P. Ficaro, N. H. Clinthorne, and K. Lange, “Grouped-

Imaging8, 194-202(1989.
R. L. White, “Image restoration using the damped Richardson—Lucy

Medical Physics, Vol. 30, No. 3, March 2003

coordinate ascent algorithms for penalized-likelyhood transmission im-
age reconstruction,” IEEE Trans. Med. Imagit§, 166—175(1997).



