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Abstract. This paper is about calibration of cone-beam (CB) scanners for both x-ray computed
tomography and single-photon emission computed tomography. Scanner calibration refers here to
the estimation of a set of parameters which fully describe the geometry of data acquisition. Such
parameters are needed for the tomographic reconstruction step. The discussion is limited to the
usual case where the cone vertex and planar detector move along a circular path relative to the
object. It is also assumed that the detector does not have spatial distortions. We propose a new
method which requires a small set of measurements of a simple calibration object consisting of
two spherical objects, that can be considered as ‘point’ objects. This object traces two ellipses
on the detector and from the parametric description of these ellipses, the calibration geometry can
be determined analytically using explicit formulae. The method is robust and easy to implement.
However, it is not fully general as it is assumed that the detector is parallel to the rotation axis of
the scanner. Implementation details are given for an experimental x-ray CB scanner.

1. Introduction

This paper concerns the problem of estimating a set of parameters which fully describe the
geometry of a cone-beam (CB) scanner. Such parameters are needed for the tomographic image
reconstruction step. We refer to this parameter estimation problem as the scanner calibration
problem.

CB scanners provide data in the form of CB projections of a density function which
describes the object under study. A CB projection is a set of line integrals diverging from a
single point called the cone vertex (see figure 1). CB projections are generally measured for a
number of positions of the cone vertex along some trajectory.

CB tomography has applications in x-ray computed tomography imaging (CT) for medical
diagnostics and industrial non-destructive evaluation, and also has applications in single-photon
emission computed tomography (SPECT) for medical diagnostics. In CT, the cone vertex
represents the x-ray source and CB projections can be collected as radiographs, using an area
detector placed so that the object is between the source and the detector. In SPECT, the cone
vertex is the focal point of a collimator which could be of converging type (Gullberg et al 1992)
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Figure 1. CB data acquisition. Line integrals of a density function describing the object are
measured for all lines diverging from a single point, called the cone vertex. The result is a CB
projection. Different CB projections are obtained when moving the cone vertex.

or pinhole type (Palmer and Wollmer 1990). The collimator is linked to a gamma camera that
basically plays the same role as the detector in CT.

Accurate scanner calibration is important for image reconstruction. In CB tomography,
it is well known that using inaccurate parameters can produce severe artefacts (see Li et al
1994a, b, Rizo et al 1994, Wang et al 1998). Even errors as low as 0.3◦ in one geometric
parameter (the orientation angle of pixels in the detector plane) can have visibly detrimental
effects on the reconstructed image (see White et al (1999) for illustrations). The purpose of this
work is to describe a new method for calibration of a CB scanner. The discussion is limited to
the usual case where the cone vertex and planar detector move along a circular path relative to
the object. It is furthermore assumed that the area detector does not have spatial distortions. The
organization of the paper is as follows. In section 2, we define the CB calibration parameters
and we summarize related methods described in the literature. In section 3, we explain the
principles of our calibration method, leaving the mathematical details to appendices. Section 4
concerns implementations. We illustrate results that have been obtained with real data from
a CT scanner. Finally, some theoretical aspects and future perspectives are discussed with
conclusions in section 5.

2. The CB calibration problem

2.1. Scanner geometry

It is convenient to consider the CB scanner as having an immobile detector and cone vertex,
and that the object is placed on an imaginary turntable. The detector is assumed to be planar
and to consist of regularly spaced detector elements (pixels) of known size. CB projections
are collected for different angular positions of the turntable. Relative to the object, such CB
projections correspond to vertex positions on a circular trajectory. Most SPECT and CT CB
scanners can be viewed similarly.

To describe the geometry of the scanner, a right-handed system of Cartesian coordinates
x, y and z is introduced. The z-axis is along the rotation axis of the turntable. The x-axis is
along the line that contains the cone vertex and perpendicularly intersects the rotation axis.
The origin of the system is at this intersection. Figure 2 illustrates the situation. In that figure,
the x, y and z-directions are denoted ex , ey and ez respectively.

Seven parameters are sufficient to calibrate a CB scanner where the vertex motion is
restricted to a circle (Rizo et al 1994). In this work, these seven parameters are denoted R, D,
θ , φ, η, u0 and v0, and are defined as follows.



Calibration method for CB scanners 3491

Figure 2. Scanner geometry. See detailed comments in section 2.1.

Figure 3. Orientation of detector pixels. Angles θ and φ specify the direction of vector ew
orthogonal to the detector plane. Vectors α and β are perpendicular to ew ; ev is an angle η from β.

The parameter R is the distance from the cone vertex to the rotation axis. It therefore
defines the vertex position in the (x, y, z) system as (R, 0, 0). Relative to the object, the vertex
moves on the circle of radius R centred on the z-axis at z = 0, because the x-axis rotates about
the z-axis.

The parameter D is the shortest distance from the vertex to the detector plane. This
distance is not necessarily measured along the x-axis.

Angles θ ∈ [−π/2, π/2] and φ ∈ [−π/2, π/2] parametrize the unit vector ew orthogonal
to the detector plane. This vector specifies the direction of the shortest line segment connecting
the detector to the cone vertex. Explicitly, we define

ew = (cos θ cosφ, cos θ sin φ, sin θ) (1)

which states that θ and φ are the co-polar and azimuthal angles of ew in the (x, y, z) space (see
figures 2 and 3). For our scanner model, the condition θ = 0 is assured when the turntable is
horizontal while the detector plane is vertical.

Angle η ∈ [−π/2, π/2) is used to define two orthogonal unit directions, eu and ev , along
which detector pixels are aligned in the detector plane. These directions are obtained by a
rotation by angle η of vectors

α = (− sin φ, cosφ, 0) (2)

β = (− sin θ cosφ,− sin θ sin φ, cos θ) (3)
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orthogonal to ew (see figure 3). Thus,

eu = cos ηα + sin ηβ (4)

ev = cos ηβ − sin ηα. (5)

Vector α specifies the direction of the line of intersection of the detector and the (x, y)-plane.
Note that if θ = 0 (or if φ = 0), then the CB projection of the rotation axis is a line on the
detector parallel to β.

Let u and v be Cartesian coordinates along vectors eu and ev in the detector plane.
Parameters u0 and v0 represent the u and v distances separating the detector pixel of least
u and v values (‘bottom left pixel’ when viewed from the cone vertex) from the orthogonal
projection of the cone vertex onto the detector plane (see figure 2). For convenience, we use
coordinates (u, v) = (0, 0) for the bottom left detector pixel. The orthogonal projection of the
cone vertex onto the detector plane is then at (u0, v0).

We say that the scanner is perfectly aligned when angles θ , φ and η are all equal to zero.
With a perfectly aligned scanner, only four parameters need to be determined. We will only
assume that θ = 0. Our method uses measurements of a simple calibration object to estimate
the six remaining geometrical parameters.

2.2. Literature overview

Methods for estimation of geometrical parameters of tomographic scanners have been
investigated by many groups since 1987 (Azevedo et al 1999, Bronnikov 1999, Busemann-
Sokole 1987, Gullberg et al 1987, 1990, Hsieh 1992, Li et al 1993, Rizo et al 1994, Rougée
et al 1993, Wang et al 1998). Calibration aspects for the parallel-beam geometry (Azevedo
et al 1999, Busemann-Sokole 1987) and fan-beam geometry (Gullberg et al 1987, Hsieh 1992)
have been reported. The techniques tend to be specific to the geometry and only the overall
approach of these methods has been followed for the CB case. In Gullberg et al (1990), Li et al
(1993), Rizo et al (1994), Rougée et al (1993) and Wang et al (1998) the idea is to estimate
CB geometric parameters as follows:

(a) Measure (u, v) locations where a point object (point source in SPECT, or small high-
density ball in CT) placed in the field of view is projected for a number N of positions
i = 1, . . . , N of the cone vertex; we denote these locations as (ũi , ṽi)-points.

(b) Determine analytic expressions for the (ũ, ṽ) locations found in step (a) as functions of the
unknown scanner parameters and unknown positions of the point object; denoting these
functions as ui(unknowns), vi(unknowns), this step provides a set of nonlinear equations{

ũi = ui(unknowns)

ṽi = vi(unknowns)
i = 1, . . . , N. (6)

(c) Solve the above equations in a least-squares sense using an iterative method, such as the
Levenberg–Marquard algorithm (Press et al 1988).

The above approach was initially proposed for CB calibration by Gullberg et al (1990). In
this work, it was observed that some scanner parameters are highly correlated and thus difficult
to obtain from equations (6). To stabilize the inversion process, the scanner was considered to be
perfectly aligned. Furthermore, it was assumed that good approximate values of the remaining
four calibration parameters and point positions were available. One important result of that
work was to show that R only plays the role of a magnifying factor in the reconstruction. As
such, R can be a posteriori estimated if one knows the distance between some subobjects,
such as two point objects in the reconstruction.
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In Wang et al (1998) and Li et al (1993), a penalty term was incorporated in the least-
squares calculation of the solution to equations (6). This penalty term was designed to hold
the scanner parameters within a specified range. Good initial values for the parameters were
still needed but the assumptions on the scanner geometry could be partly relaxed. Essentially,
non-zero φ angles were permitted while η and θ were still assumed to be zero.

The method of Rizo et al (1994) was specific to SPECT imaging with CB collimators.
They separated the scanner parameters into two classes, intrinsic parameters (D, u0 and v0) and
extrinsic parameters (θ , φ and η), withR being considered separately. The intrinsic parameters
describe the CB collimation, and are independent of the trajectory followed by the cone vertex.
A method to establish the intrinsic parameters of a CB collimator was described. The approach
involved two grids of point objects which were physically placed parallel to the collimator face.
Then, using the known intrinsic collimator parameters and a single point object, the extrinsic
scanner parameters could be obtained as the least-squares solution of equations (6), using
coarse initial values since the extrinsic parameters are not strongly correlated. One important
characteristic of the method of Rizo et al (1994) is that the scanner could be completely
misaligned, i.e. angles θ , φ and η could all be non-zero.

The approach taken by Rougée et al (1993) was similar to that of Gullberg et al (1990),
Li et al (1993) and Wang et al (1998), except the calibration point object was replaced by a
number of point objects with known relative positions. The design of this calibration object
required very high precision, but in principle better results than those in Gullberg et al (1990),
Li et al (1993) and Wang et al (1998) could be obtained. No assumptions about angles θ , φ
and η were made and coarse initial values could be used.

A potential weakness of all of the above methods is that they rely on a highly nonlinear
parameter-estimation problem, as described by equations (6). This formulation presents the
numerical difficulties of nonlinear optimization routines: the requirement for reasonable initial
estimates and the possible need to carefully choose the sequence of parameters to optimize.
Furthermore, there are questions of stability and uniqueness. Without further analysis, it is
uncertain if local minima exist or if more than one set of calibration parameters can satisfy the
equations.

In this work, we avoid these difficulties by introducing an intermediate set of parameters
for which the much more straightforward estimation problem of fitting an ellipse applies.
From the ellipse parameters, analytic expressions are derived for the calibration parameters.
This method is robust, easy to implement, and uses a simple calibration object. However, the
method is not fully general, as θ = 0 is assumed.

Our method differs considerably from the direct analytic approach recently published by
Bronnikov (1999). In that work the goals are different as only u0 and φ are estimated, assuming
angles η and θ are zero and R, D and v0 are known. Although both methods use the same
calibration object, the work described here and that of Bronnikov (1999) are complementary.
Only two views are used to find u0 and φ, whereas a minimum of six views are required (see
below) in our method to find u0, v0, η, φ, D and R.

3. Analytic calibration

3.1. Principles

We use the scanner to collect N CB projections of a calibration object consisting of two
small point objects. The number N is even and the CB projections are uniformly spaced over
360◦. The two point objects must be placed well away from the rotation axis. For the most
reliable performance of the algorithm, one should be at a positive z position while the other
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Figure 4. Calibration object. Measurements for two point objects placed in the field of view are
needed to calibrate the scanner. These two points should be well away from the rotation axis and
at a known distance from each other. Neither of them should be in the plane z = 0, where the cone
vertex lies. Each point object traces an ellipse in the detector plane during data acquisition.

is at a negative z position; neither should be in or close to the plane of the cone vertex (the
(x, y) plane) (see figure 4). When it is not possible to place the point objects on opposite sides
of the (x, y) plane, as for example for calibration of circle scans at the top or bottom of the
field-of-view (see Tam (1997) for more details on this geometry), the point objects should be
placed well apart from each other in the z direction and away from the (x, y) plane. In either
case (point objects on opposite or the same sides of the (x, y) plane), the distance between
the two point objects must always be known accurately. This distance should be the largest
possible while ensuring both point objects are in the field of view for any position of the
turntable. Note that the z positions of the point objects do not need to be known.

The scanner calibration is carried out in three steps. In the first step, measurements are
used to determine where the rotation axis is projected onto the detector, and the angle η is
estimated using this information. Details are given in section 3.2. Once η is known, a rotation
is applied to the detector pixel positions to proceed as if η were zero.

The second step consists of estimating ellipse parameters. Observe first that each point
object traces a circle during data acquisition (see figure 4). Geometrically, the CB projection
of the two circles yields two ellipses in the detector plane. The CB data are used to determine
the equation of these ellipses. (See section 3.3 for a definition of the ellipse parameters and
details on the fitting operation.)

It will be shown in section 3.4 that knowledge of the ellipse parameters and the distance
separating the two point objects provides independent equations for the unknowns R, D, φ, u0

and v0. These equations can be solved analytically to obtain direct formulae for the unknowns.
Straightforward application of these formulae constitutes the last calibration step.

In section 3.5, a method is provided to estimate uncertainties of the scanner parameters
due to errors in the measurements.

3.2. Calculation of η

This section focuses on the determination of two particular detector locations: (û1, v̂1) and
(û2, v̂2). These locations are defined as the CB projection of the centre of the two circles
traced by the point objects during data acquisition. (Note that these locations do not generally
correspond to the centre of the ellipses (see figure 5).) Geometrically, the centres of the circles
lie on the rotation axis. Therefore, (û1, v̂1) and (û2, v̂2) are on the CB projection of the rotation
axis. Also, v̂1 �= v̂2 because the two point objects were placed at different z locations. When



Calibration method for CB scanners 3495

Figure 5. Definition of (û, v̂) and (u, v) for one point object. Point (û, v̂) is the projection of the
centre of a circle traced by the point object in the field of view. This point lies at the intersection
of all lines connecting projections of the point object for two angular positions 180◦ apart. Point
(u, v) is the centre of the ellipse traced by the point object in the detector plane. Geometrically,
(û, v̂) is different from (u, v).

(û1, v̂1) and (û2, v̂2) are known, one obtains

η = arctan

(
û1 − û2

v̂1 − v̂2

)
. (7)

This equation results from two observations: the line joining (û1, v̂1) to (û2, v̂2) is parallel to
the vector β because β is parallel to the projection of the rotation axis when θ = 0, and β is
at an angle η from ev (see figure 3).

To obtain (û1, v̂1) to (û2, v̂2), we use CB measurements. Let (u(i)1 , v
(i)
1 ) and (u

(i)
2 , v

(i)
2 ),

i = 1, . . . , N , be the detector locations where the two point objects are projected for the N
positions of the turntable. Recall that N is even and CB projections are uniformly spaced over
360◦. The values of ûk and v̂k , with k = 1 or k = 2, are obtained as the least-squares solution
of the linear equations

(u
(j)

k − u
(i)
k )v̂k − (v

(j)

k − v
(i)
k )ûk = v

(i)
k u

(j)

k − v
(j)

k u
(i)
k j = i + N/2 i = 1, . . . , N/2.

(8)

These equations state that all lines which connect projections of the point object k for two
angular positions 180◦ apart (positions i and j = i + N/2) intersect at (ûk, v̂k) (see figure 5).

Once η is known (using (8), then (7)), a rotation is applied to the detector pixels to proceed
as if η were zero. This rotation is performed about (u, v) = (0, 0) and modifies u and v into

u∗ = u cos η − v sin η

v∗ = u sin η + v cos η.
(9)

In particular, the unknown (u0, v0) becomes (u∗
0, v

∗
0) and we have

u0 = u∗
0 cos η + v∗

0 sin η

v0 = −u∗
0 sin η + v∗

0 cos η.
(10)

3.3. Calculation of ellipse parameters

Let (u(i), v(i)), i = 1, . . . , N , be the detector locations (after the transformation of equation (9))
where one point object is projected during data acquisition.
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Mathematically, one can show that the (u(i), v(i)) points lie on an ellipse. (A proof of this
assertion is given in equations (26)–(30) in appendix B.) To describe the ellipse, we use the
equation

a(u − u)2 + b(v − v)2 + 2c(u − u)(v − v) = 1 (11)

where (u, v) is the centre of the ellipse. Parameters a, b, c, u and v can be found using a linear
least-squares method from estimates of the (u(i), v(i)) points. (See appendix A for the method
we use for obtaining the parameters.)

We now assume that the ellipse parameters a, b, c, u, v are known for both ellipses.

3.4. Calculation of scanner parameters

In this section, equations are given which describe how the scanner parameters are calculated.
The two point objects mentioned in section 3.1 are used. The ellipse parameters for the first
point are a1, b1, c1, u1 and v1. The parameters for the second point are a2, b2, c2, u2 and v2.

In the process of calculating R, D, u∗
0, v∗

0 and φ, some supplementary unknowns are
introduced. These unknowns correspond to the radius and z-location of the circle traced
during the rotation of each point object. For the first point, we use r1 and z1 respectively, and
for the second point we use r2 and z2. The following equations relate the nine unknowns to
the ten known ellipse parameters ak , bk , ck , uk and vk , k = 1, 2 (see appendix B):

uk = u∗
0 +

D sin φ cosφ

cos2 φ − ρ2
k

vk = v∗
0 +

Dζk cosφ

cos2 φ − ρ2
k

(12)

ak = cos2 φ − ρ2
k

ρ2
kD

2
bk = ak(1 − ρ2

k )

ζ 2
k

ck = −ak sin φ

ζk

where ρk = rk/R, and ζk = zk/R, k = 1, 2. To solve these equations for the unknowns,
first note that the sign of zk can be easily obtained by data inspection, e.g. when zk > 0, one
observes that the projection of the point object moves clockwise in the detector plane for a
counterclockwise rotation of the turntable (see figure 4). We consider below that these sign
values are known.

According to the results in appendices C and D, equations (12) can be inverted to get u∗
0,

v∗
0 , D, φ, and also ρk and ζk , k = 1, 2. The distance D is first calculated using the formula

D2 =
(a1 − 2n0n1) − ε

√
a2

1 + 4n2
1 − 4n0n1a1

2n2
1

(13)

with n0 = (1 − m2
0 − m2

1)/(2m0m1) and n1 = (a2 − a1m
2
1)/(2m0m1), where

m0 = (v2 − v1)

√
b2 − c2

2/a2 (14)

and

m1 =
√
b2 − c2

2/a2/

√
b1 − c2

1/a1. (15)

In equation (13), ε = 1 when z1z2 < 0, that is, when the two point objects are placed on
opposite sides of the plane z = 0. When z1z2 > 0, the situation is more complicated: one
must choose between ε = 1 or ε = −1 and a physical measurement of D on the scanner may
be needed to make the correct choice. Appendix D contains a short discussion of this case.
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Once D is known, the other unknowns are given by the following equations:

v∗
0 = v1 − sign(z1)

√
a1 + a2

1D
2/

√
a1b1 − c2

1

u∗
0 = 1

2
u1 +

1

2
u2 +

c1

2a1
(v1 − v∗

0) +
c2

2a2
(v2 − v∗

0)

ρk =
√
akbk − c2

k/

√
akbk + a2

k bkD
2 − c2

k k = 1, 2 (16)

ζk = D sign(zk)ak
√
ak/

√
akbk + a2

kbkD
2 − c2

k k = 1, 2

sin φ = − c1

2a1
ζ1 − c2

2a2
ζ2.

Recall that u0 and v0 are obtained from u∗
0 and v∗

0 using (10).
The value of R, and thereby the value of rk and zk , k = 1, 2, cannot be obtained from

equations (12). To estimate these values, an extra equation is needed. Recall that R only plays
the role of a magnification factor in the reconstruction (Gullberg et al 1990). To obtain R, we
use the distance d separating the two point objects. (Recall from section 3.1 that we assume
this distance is known.) As shown in appendix E, d is linked to R by the relation

d2

R2
= 1

N

N∑
i=1



(
ζ1
u
(i)
1 − u∗

0

v
(i)
1 − v∗

0

− ζ2
u
(i)
2 − u∗

0

v
(i)
2 − v∗

0

)2

+

(
Dζ1

v
(i)
1 − v∗

0

− Dζ2

v
(i)
2 − v∗

0

)2

+ (ζ1 − ζ2)
2




(17)

where (u(i)1 , v
(i)
1 ) and (u(i)2 , v

(i)
2 ) are, as in section 3.3, the locations of the two point objects in

the ith CB projection after the transformation of equation (9). From (17), we obtain R, and
then rk = Rρk and zk = Rζk , for k = 1, 2. Due to the specific form of equation (17), one sees
that any error on d would affect the estimate of R in a proportional way.

3.5. Uncertainties of the scanner parameters

The above calibration procedure is an analytic method which provides exact results when the
locations (u(i)1 , v

(i)
1 ) and (u(i)2 , v

(i)
2 ), i = 1, . . . , N , are exactly known and N � 6. However, in

practice, only approximate values of (u(i)1 , v
(i)
1 ) and (u(i)2 , v

(i)
2 ) can be obtained. In this section,

we provide a method to estimate uncertainties of the calibration parameters from uncertainties
in the measured locations (u(i)k , v

(i)
k ), k = 1, 2.

Observe that by chaining together the formulae of sections 3.2, 3.3 and 3.4 each estimated
parameter can be written as a function of the variables u(i)1 , v(i)1 , u(i)2 and v(i)2 , i = 1, . . . , N . For
example, consider the calculation of η according to formula (7). The quantities û1 and v̂1 (and
similarly, û2 and v̂2) appearing in this formula are obtained from the least-squares solution of
a system of linear equations (see (8)). Using matrix notation, this system could be written as

A

(
û1

v̂1

)
= b (18)

where the vector b and the matrix A involve the quantities u(i)1 , v(i)1 , u(i)2 and v
(i)
2 . The least-

squares solution of (18) can be written explicitly as(
û1

v̂1

)
= (AT A)−1AT b (19)

which means that û1 and v̂1 can be written as (nonlinear) functions of u(i)1 , v(i)1 , u(i)2 and v
(i)
2 .

The same observation holds for û2 and v̂2, and thus also for η.
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Figure 6. X-ray CB scanner currently under investigation at the Idaho National Engineering and
Environmental Laboratory.

To show that the other scanner parameters (D, u0, v0, φ and R) can also be written as
functions of u(i)1 , v(i)1 , u(i)2 and v

(i)
2 , recall that we have analytic formulae relating D, u0, v0, φ

and R to the ellipse parameters ak , bk , ck , uk and vk , where k = 1, 2. These ellipse parameters
are obtained as explained in appendix A: first, a system of linear equations is solved in the
least-squares sense to obtain intermediate quantities, called pj , j = 0, . . . , 4, from the values
of u(i)1 , v(i)1 , u(i)2 and v

(i)
2 ; next analytic formulae are used to get ak , bk , ck , uk and vk from

these quantities. Using equations similar to (18) and (19), the quantities pj can be written as
functions of u(i)1 , v(i)1 , u(i)2 and v

(i)
2 . Therefore, ak , bk , ck , uk and vk , and consequently D, u0,

v0, φ and R, can in principle be written as explicit functions of u(i)1 , v(i)1 , u(i)2 and v
(i)
2 .

Now, suppose that u(i)1 , v(i)1 , u(i)2 and v
(i)
2 are only known up to some common accuracy

δ and let A be one of the parameters η, D, u0, v0, φ or R. The uncertainty )A on A can be
estimated using the formula

)A = δ

N∑
i=1

(∣∣∣∣∣ ∂A
∂u

(i)
1

∣∣∣∣∣ +

∣∣∣∣∣ ∂A
∂v

(i)
1

∣∣∣∣∣ +

∣∣∣∣∣ ∂A
∂u

(i)
2

∣∣∣∣∣ +

∣∣∣∣∣ ∂A
∂v

(i)
2

∣∣∣∣∣
)

(20)

(see, for example, Rade and Westergren (1995)).
Direct analytic calculation of the partial derivatives in (20) would be unwieldy and can be

avoided because these derivatives can be reliably computed in a numerical way. For instance,
to get ∂A/∂u

(1)
1 we compute the value of A from the quantities u(i)1 , v(i)1 , u(i)2 and v

(i)
2 , using

(1+ε)u(1)1 instead of u(1)1 , and again using (1−ε)u
(1)
1 instead of u(1)1 , where ε is a small number.

The subtraction of the two resulting values of A followed by a division by 2ε provides a reliable
estimate of ∂A/∂u

(1)
1 when ε is small enough.

4. Implementation

The discussion is focused on the calibration of an experimental x-ray CB scanner currently
under investigation at the Idaho National Engineering and Environmental Laboratory
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Figure 7. Calibration object. The two small high-density balls playing the role of point objects
are mounted on a plastic plate.

Figure 8. (Left and middle) Two typical projections of the calibration object. (Right) Superposition
of 12 CB projections evenly spaced over 360◦.

(see figure 6). This scanner consists of a turntable and an immobile source–detector pair,
as illustrated in figure 2. The object under study is placed on the turntable and different CB
projections are collected while rotating this table.

To calibrate the scanner, we first placed the turntable in the horizontal position and the
detector in the vertical position, using a level, to verify the condition θ = 0. Next, we
collected CB projections of the calibration object shown in figure 7. Figure 8 shows two typical
projections. The x-ray generator used for data collection was an industrial unit manufactured
by Andrex (300 kVp/3.0 mA maximum output, fixed anode, 100% duty cycle) operated at
162 kVp and 0.5 mA. The beam was filtered with 4 mm of Al and 4.8 mm of Cu to harden
it and avoid saturating the detector. The detector was a distortion-free amorphous silicon
flat-panel imager (FlashScan-30 from dpiX) discretized to 2304 × 3200 pixels on a 127 µm
pitch. Each pixel was digitized to 12 bits and non-uniformities in the beam profile and detector
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Table 1. Ellipse parameters for N = 6, 12, 120 projections.

ak bk ck uk vk

N Ellipse (k) (mm−2) (mm−2) (mm−2) (mm) (mm)

12 1 8.096 × 10−5 1.335 × 10−3 8.986 × 10−6 135.77 340.33
6 1 8.090 × 10−5 1.335 × 10−3 9.291 × 10−6 135.67 340.35

120 1 8.093 × 10−5 1.337 × 10−3 9.009 × 10−6 135.76 340.31

12 2 7.975 × 10−5 1.199 × 10−3 −9.291 × 10−6 135.80 55.57
6 2 7.975 × 10−5 1.199 × 10−3 −9.418 × 10−6 135.75 55.59

120 2 7.973 × 10−5 1.199 × 10−3 −9.227 × 10−6 135.81 55.58

Table 2. Calibration results for different numbers N of projections.

η D u0 v0 φ R r1 z1 r2 z2

N (deg) (mm) (mm) (mm) (deg) (mm) (mm) (mm) (mm) (mm)

12 −0.304 553.49 150.92 202.08 −1.611 377.88 74.37 91.22 74.90 −95.52
6 −0.299 553.56 151.25 202.08 −1.650 377.90 74.39 91.21 74.90 −95.51

120 −0.305 553.82 150.88 202.10 −1.607 378.09 74.38 91.20 74.91 −95.52

readout electronics were corrected in a nonlinear image-correction algorithm. Four-by-four
regions of adjacent pixels were averaged before logarithmic correction of the projections to
give an effective pixel dimension of 0.508 mm. The integration time per projection was 3.4 s;
this long integration time is acceptable for industrial CT applications and will decrease as
detector electronics become faster. (For medical applications, a detector with a faster readout
should be used along with a lower-energy x-ray beam.)

The calibration object consisted of two small stainless steel balls mounted on a plastic
plate; the diameter of the balls was about 8 mm and the plastic plate was chosen as a low-density
material so that the balls could be clearly distinguished in the projections for most positions
of the turntable. The point objects used in the calibration method were considered to be the
centres of these two stainless steel balls. For each projection i, we calculated the centroids of the
images of these two balls in the detector plane to estimate the locations (u(i)1 , v

(i)
1 ) and (u(i)2 , v

(i)
2 )

where these point objects appeared. Next, we applied the formulae of section 3. The results are
presented in tables 1 and 2. These results were successively obtained with 12, 6 and then 120
CB projections evenly spaced over 360◦. We also show in figure 8 the sum of the 12 projections.
This figure illustrates the motion of the two balls on ellipses during data acquisition.

Table 2 also illustrates the numerical stability of our calibration method because only
very small differences were observed in the estimation of scanner parameters using different
numbers of projections. In particular, for rk and zk , k = 1, 2, we note that the differences were
much smaller than the detector pixel size (less than one-twentieth of the pixel size). Tables 1
and 2 also show that with accurate estimates of the ellipses, the method can perform well with
only six projections. Six is the minimum number of projections required to perform calibration
with our method.

As explained in section 3.5, the uncertainty of the scanner parameters depends on the
accuracy to which the centroid values u

(i)
1 , v

(i)
1 , u

(i)
2 and v

(i)
2 can be estimated. Using

formula (20) with an error of one-tenth of a pixel on these values, we obtained the uncertainties
shown in table 3.

To get satisfactory results, the computation of the locations (u(i)1 , v
(i)
1 ) and (u(i)2 , v

(i)
2 ) must

be carried out carefully, as explained below.
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Table 3. Uncertainties of the scanner parameters for N = 6, 12, 120.

)η )D )u0 )v0 )φ )R )r1 )z1 )r2 )z2

N (deg) (mm) (mm) (mm) (deg) (mm) (mm) (mm) (mm) (mm)

12 0.077 2.012 2.228 0.497 0.223 1.093 0.130 0.330 0.128 0.329
6 0.077 1.936 2.201 0.472 0.221 1.074 0.117 0.312 0.121 0.317

120 0.083 2.065 2.133 0.511 0.211 1.163 0.126 0.349 0.123 0.348

First, attention must be paid to the design of the calibration balls. We selected a material
that is not too absorbing at the x-ray energy used to avoid getting projections which would be
flat in their central part because of beam hardening. Otherwise, errors would have occurred in
the centroid calculation. The size of the ball was also important: to minimize discretization
errors in the centroid calculation, the balls should be projected on a large number of pixels. In
our implementation, more than 400 pixels were involved in the calculation of a given centroid.

Next, care must be taken with the holding support, if any (the plastic plate, here). In
this implementation, we applied a threshold to the x-ray images (projections) to remove the
background intensity due to the plastic plate. The threshold was given as the smallest possible
value for each projection; different projections were thus applied with different thresholds.
Projections for which the threshold was higher than 20% of the maximum intensity value were
disregarded.

5. Discussion and conclusions

In this work, we have proposed a new method for calibration of CB scanners that use a circular
path for the cone vertex. This method is robust, easy to implement and uses a simple calibration
object. It is not fully general as θ = 0 is assumed, which means that the detector should be
parallel to the rotation axis of the scanner. Also, any spatial distortions of the area detector
should be corrected prior to using the method.

The preferred method involves positioning the calibration object so that one point projects
above the plane of the cone vertex path, and the other point projects below. However, if both
points must be placed on the same side of this plane, the method can still be applied, but with
a few more steps to find the parameter D (see appendix D for the details).

In practice, condition θ = 0 is known to be a weak requirement (Gullberg et al 1990,
Li et al 1993, Wang et al 1998), especially because the scanner can often be aligned to meet
this condition. Our future investigations will be focused on direct calculation of θ along with
the other scanner parameters to permit more flexibility in data acquisition. At this stage of
our research, we have observed that more than two point objects are needed to calibrate the
scanner when θ is non-zero.

Errors on the estimation of the scanner parameters depend on the accuracy of the locations
of the projected point objects. The precautions we took in the calculation of these locations
seem to be satisfactory for calibration of CT systems. For calibration of SPECT systems, a
better approach involving photon statistics might be needed for the centroid calculation (see e.g.
Hsieh 1992). Uncertainties in the estimated scanner parameters can be obtained as explained in
section 3.5. To test the reliability of the parameters, we also carry out successive evaluations
using different sets of projections, as shown in table 2, and perform resolution tests on the
reconstructions of point and rods objects, as illustrated in White et al (1999).

We are also exploring calibration of scanners in spiral CT and helical CB tomography.
Preliminary results for a helical CB scanner are presented in Noo et al (2000).
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FN is chargé de recherches with the National Fund for Scientific Research (FNRS, Belgium).
This work was supported in part by the US Department of Energy, Assistant Secretary
for Environmental Management, Environmental Systems Research Program, under DOE
Operations Office Contract DE-AC07-94ID13223.

Appendix A

In this appendix, we explain how parameters a, b, c, u and v describing the ellipse equation (11)
can be calculated when points (u(i), v(i)), i = 1, . . . , N belonging to the ellipse are known.
There are many possible methods to fit the ellipse; the one we describe here is taken from
Niewenglowski (1911).

Our method involves intermediate variables pj , j = 0, . . . , 4 that allow us to rewrite the
ellipse equation (11) in the form

p0u
2 + v2 − 2p1u − 2p2v + 2p3uv + p4 = 0. (21)

These variables are related to a, b, c, u and v by the equations

p0 = a

b
p1 = a

b
u +

c

b
v p2 = v +

c

b
u p3 = c

b

p4 = a

b
u2 + v2 + 2

c

b
uv − 1

b
. (22)

The estimation of a, b, c, u and v is carried out in two steps. The pj , j = 0, . . . , 4
variables are first calculated as the least-squares solution of linear equations

p0(u
(i))2 − 2p1u

(i) − 2p2v
(i) + 2p3u

(i)v(i) + p4 = −(v(i))2 i = 1, . . . , N. (23)

Next, relations (22) are inverted to get

u = (p1 − p2p3)/(p0 − p2
3) v = (p0p2 − p1p3)/(p0 − p2

3) (24)

and also

a = p0/(p0u
2 + v2 + 2p3uv − p4) b = a/p0 and c = p3b. (25)

Note that the least-squares solution of (23) is unique only if N � 5. Generally, choosing
N = 5 is sufficient to calculate the ellipse parameters. However, if (u(i), v(i))-locations are
only known up to some accuracy, as is the case in practice, better results would be obtained
with increasing N values.

Appendix B

Here, we derive equations (12) that relate the geometrical parameters of the scanner to the
parameters of the ellipse generated by the CB projection of a single point object rotating about
the z-axis. For this discussion, it is assumed that η = 0.

We consider that the point object is initially at the location x0 = (r cosψ0, r sinψ0, z) in
the (x, y, z) coordinate system of figure 2. After a rotation of angle ψ about the z-axis, its
position is thus x = (r cos(ψ + ψ0), r sin(ψ + ψ0), z).

For angular position ψ , the CB projection of the point source is at the (u, v) location
defined by the vector equation

x − Rex = t ((u − u0)eu + (v − v0)ev − Dew). (26)
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Figure 9. CB projection of a point object for a given position ψ of the turntable. At ψ = 0, the
point object was at x = (r cosψ0, r sinψ0, z).

Equation (26) states that the vector from the cone vertex to the point x is a multiple, t , of the
vector from the cone vertex to the CB projection of x onto the detector (see figure 9). With the
definition of vectors eu, ev and ew given in section 2, and using θ = 0 and η = 0, equation (26)
leads to the following relations

r cos(ψ + ψ0) = R − t ((u − u0) sin φ + D cosφ) (27)

r sin(ψ + ψ0) = t ((u − u0) cosφ − D sin φ) (28)

z = t (v − v0). (29)

Note that v �= v0 since the point object does not lie in the (x, y) plane. Therefore equation (29)
can be used to eliminate t in equations (27) and (28), which can be squared and summed to
eliminate ψ + ψ0 and obtain the ellipse equation

p0U
2 + V 2 − 2p1U − 2p2V + 2p3UV + p4 = 0 (30)

where U = u − u0 and V = v − v0. The variables pj , j = 0, . . . , 4 in (30) are defined as
follows

p0 = ζ 2

1 − ρ2
p1 = 0 p2 = ζD cosφ

1 − ρ2
p3 = − ζ sin φ

1 − ρ2
p4 = ζ 2D2

1 − ρ2

(31)

with ρ = r/R and ζ = z/R. Using the results of appendix A, (30) can be rewritten in the
form

a(u − u)2 + b(v − v)2 + 2c(u − u)(v − v) = 1 (32)

with

u = u0 + (p1 − p2p3)/(p0 − p2
3) v = v0 + (p0p2 − p1p3)/(p0 − p2

3)

a = p0/{p0(u − u0)
2 + (v − v0)

2 + 2p3(u − u0)(v − v0) − p4} (33)

and b = a/p0, c = p3b. From (31), one then obtains

u = u0 +
D sin φ cosφ

cos2 φ − ρ2
v = v0 +

Dζ cosφ

cos2 φ − ρ2

a = cos2 φ − ρ2

ρ2D2
b = a(1 − ρ2)

ζ 2
c = −a sin φ

ζ
. (34)

These relations are those of section 3.4.
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Appendix C

This appendix describes how the scanner parameters can be calculated from the nonlinear
equations (12) which relate these parameters to the ellipse parameters for two point objects.
Equations (12) can be rewritten as follows:

u1 = u0 +
D sin φ cosφ

cos2 φ − ρ2
1

(35a)

u2 = u0 +
D sin φ cosφ

cos2 φ − ρ2
2

(35b)

v1 = v0 +
Dζ1 cosφ

cos2 φ − ρ2
1

(35c)

v2 = v0 +
Dζ2 cosφ

cos2 φ − ρ2
2

(35d)

a1 = cos2 φ − ρ2
1

ρ2
1D

2
(35e)

a2 = cos2 φ − ρ2

ρ2D2
(35f)

b1 = 1 − ρ2
1

ζ 2
1

a1 (35g)

b2 = 1 − ρ2
2

ζ 2
2

a2 (35h)

c1 = − sin φ

ζ1
a1 (35i)

c2 = − sin φ

ζ2
a2. (35j)

The unknowns are D, u0, v0, φ, ρ1, ζ1, ρ2 and ζ2.
Before solving the above equations, we recall from section 3.3 that the sign of parameters

ζ1 and ζ2 can be easily found by inspection of the CB projections of the two point objects. We
consider that these values are known.

In a first step towards inversion of equations (35), we use (35e), (35g) and (35i) to get
ρ1 and ζ1 as functions of D. Noting first that a1b1 − c2

1 = a3
1D

2ρ2
1/ζ

2
1 � 0, straightforward

calculations lead us to the following relations

ρ1 =
√
a1b1 − c2

1/

√
a1b1 + a2

1b1D2 − c2
1

ζ1 = D sign(ζ1)a1
√
a1/

√
a1b1 + a2

1b1D2 − c2
1.

(36)

We solve for v0 as a function of D by starting with equation (35c), eliminating φ using (35e),
then applying equations (36) as follows:

v0 = v1 − Dζ1 cosφ

cos2 φ − ρ2
1

= v1 − Dζ1ρ1

√
1 + a1D2

ρ2
1a1D2

= v1 − sign(ζ1)

√
a1 + a2

1D
2/

√
a1b1 − c2

1. (37)

A similar sequence can be applied to find v0 in terms of the second ellipse parameters. Equating
these expressions for v0 yields an equation in D only:

v1 − sign(ζ1)

√
a1 + a2

1D
2/

√
a1b1 − c2

1 = v2 − sign(ζ2)

√
a2 + a2

2D
2/

√
a2b2 − c2

2. (38)
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This equation can be solved analytically as explained in appendix D. Note that another equation
forD can be obtained by equating the two values ofu0 available from equations (35a) and (35b).
This approach was disregarded because the resulting equation for D degenerates as φ tends to
zero.

Once D is known from (38), all the other parameters can be calculated as follows. We
first get

v0 = v1 − sign(ζ1)

√
a1 + a2

1D
2/

√
a1b1 − c2

1. (39)

Next, we use (36) to get ρ1, ζ1, and analogously for ρ2 and ζ2. Angle φ can be either obtained
from (35i) or (35j ), i.e.

sin φ = − c1

a1
ζ1 or sin φ = − c2

a2
ζ2. (40)

This situation shows the existence of a certain redundancy of information in equations (35).
We use this redundancy to improve accuracy of the φ value by averaging available estimates,
i.e. we take

sin φ = − c1

2a1
ζ1 − c2

2a2
ζ2. (41)

Parameter u0 can also be obtained in two different ways. Using (35a), (35c) and (35i), we get

u0 = u1 − D sin φ cosφ

cos2 φ − ρ2
1

= u1 +
c1

a1
(v1 − v0). (42)

Or else, using (35b), (35d) and (35j ), we get

u0 = u2 − D sin φ cosφ

cos2 φ − ρ2
2

= u2 +
c2

a2
(v2 − v0). (43)

In the presence of errors in the ellipse parameters, (42) and (43) will produce slightly different
estimates for u0. To improve accuracy on u0, we average available estimates, i.e. we calculate:

u0 = 1

2
u1 +

1

2
u2 +

c1

2a1
(v1 − v0) +

c2

2a2
(v2 − v0). (44)

Appendix D

This appendix provides mathematical details of the calculation of D from equation (38).
Observe first that this equation is quadratic in x = D2 and admits thus at most two solutions.
To solve (38), we introduce intermediate quantities

m0 = (v2 − v1)

√
b2 − c2

2/a2 (45)

and

m1 =
√
b2 − c2

2/a2/

√
b1 − c2

1/a1. (46)

Using these definitions, equation (38) can be written in the form√
1 + a2x = sign(z2)(m0 + m1 sign(z1)

√
1 + a1x). (47)

Squaring both sides of this equation, we get√
1 + a1x = sign(z1)(n0 + n1x) (48)

with n0 = (1 − m2
0 − m2

1)/(2m0m1) and n1 = (a2 − a1m
2
1)/(2m0m1). Squaring again both

sides of (48), we obtain the equation

n2
1x

2 + (2n0n1 − a1)x + n2
0 − 1 = 0. (49)
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Figure 10. Graphical construction of x1 and x2 when m1 < 0. On the left: x2 appears when
squaring both sides of (47). On the right: x2 appears when squaring both sides of (48). In each
case, the correct root is x1.

The solutions of this equation are

x1 = a1 − 2n0n1 − √
)

2n2
1

and x2 = a1 − 2n0n1 +
√
)

2n2
1

(50)

with ) = a2
1 + 4n2

1 − 4n0n1a1. To be solutions of (47), x1 and x2 must satisfy the conditions

sign(z1)(n0 + n1x) > 0 and sign(z2)(m0 + m1 sign(z1)
√

1 + a1x) > 0. (51)

Note that x1 < x2.
Geometrically, the solutions of (47) are at the intersections of two half-parabolas. When

z1 and z2 have opposite signs, these half-parabolas have opposite convexities (m1 is a positive
number). Therefore, (47) admits at most one solution. For physical reasons, there must be one
positive solution; this solution is x1 and thusD = √

x1. The situation is illustrated in figure 10.
In this figure, f1(x) = √

1 + a2x, f2(x) = sign(z2)(m0 + m1 sign(z1)
√

1 + a1x), f3(x) =√
1 + a1x andf4(x) = sign(z1)(n0+n1x). To draw the graphs off1(x), f2(x), f3(x) andf4(x),

note that with z1z2 < 0, the condition f2(0) > f1(0) (i.e. sign(z2)(m0 + m1 sign(z1)) > 1) is
required to guarantee that equation (47) admits a positive root. Also, from the definition of n0,
sign(z2)(m0 + m1 sign(z1)) > 1 implies sign(z1)n0 > 1, i.e. f4(0) > f3(0). Mathematically,
the spurious root can be introduced either when squaring both sides of (47) or when squaring
both sides of (48). In both cases, as shown in figure 10, this spurious root will be the largest
root of (49), i.e. x2.

When z1 and z2 have the same sign, the situation is more complicated and no simple rule
was found to choose between x1 and x2. Conditions (51) have to be checked. Usually, (51) will
identify a spurious solution, and D can be uniquely found. However, it is also possible for
x1 and x2 to both satisfy (47), and two values are then available for D. This situation is only
likely to arise in unusual circumstances, such as both point objects being placed at close z and
r locations. When this occurs, a physical measurement of D on the scanner may be needed to
identify the correct value.
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Appendix E

In this appendix, we derive equation (17) that relates the parameterR to the distance d between
the two point objects. We consider that these two objects are initially at

xk = (rk cosωk, rk sinωk, zk) k = 1, 2. (52)

After a rotation of angle ψ about the z-axis, their positions are thus

xk = (rk cos(ωk + ψ), rk sin(ωk + ψ), zk) k = 1, 2. (53)

By definition, we have

d2 = (r1 cos(ω1 + ψ) − r2 cos(ω2 + ψ))2 + (r1 sin(ω1 + ψ) − r2 sin(ω2 + ψ))2 + (z1 − z2)
2.

(54)

Let (u(i)k , v
(i)
k ), k = 1, 2 be the detector positions where the point objects are projected

for some angular positions ψi, i = 1, . . . , N . Assuming η = 0 and following the same
developments as in appendix B, we can derive the relations

rk cos(ωk + ψi) = R − zk

v
(i)
k − v0

((u
(i)
k − u0) sin φ + D cosφ) (55)

rk sin(ωk + ψi) = zk

v
(i)
k − v0

((u
(i)
k − u0) cosφ − D sin φ). (56)

Inserting (55) and (56) into (54), direct calculations lead to the equation

d2 =
(
z1
u
(i)
1 − u0

v
(i)
1 − v0

− z2
u
(i)
2 − u0

v
(i)
2 − v0

)2

+

(
Dz1

v
(i)
1 − v0

− Dz2

v
(i)
2 − v0

)2

+ (z1 − z2)
2. (57)

Or also,

d2

R2
=
(
ζ1
u
(i)
1 − u0

v
(i)
1 − v0

− ζ2
u
(i)
2 − u0

v
(i)
2 − v0

)2

+

(
Dζ1

v
(i)
1 − v0

− Dζ2

v
(i)
2 − v0

)2

+ (ζ1 − ζ2)
2 (58)

with ζ1 = z1/R and ζ2 = z2/R.
Equation (58) holds for all values of index i. However, when positions (u(i)k , v

(i)
k ) are only

known up to some accuracy, slightly different values of d2/R2 will be obtained for different
i indices. To improve accuracy on calculation of d2/R2, and thereby on calculation of R, an
average of all available estimates of d2/R2 is taken, which leads to equation (17).
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