
7 Algebraic Reconstruction 
Algorithms 

An entirely different approach for tomographic imaging consists of 
assuming that the cross section consists of an array of unknowns, and then 
setting up algebraic equations for the unknowns in terms of the measured 
projection data. Although conceptually this approach is much simpler than 
the transform-based methods discussed in previous sections, for medical 
applications it lacks the accuracy and the speed of implementation. However, 
there are situations where it is not possible to measure a large number of 
projections, or the projections are not uniformly distributed over 180 or 
360”) both these conditions being necessary requirements for the transform- 
based techniques to produce results with the accuracy desired in medical 
imaging. An example of such a situation is earth resources imaging using 
cross-borehole measurements discussed in Chapter 4. Problems of this type 
are sometimes more amenable to solution by algebraic techniques. Algebraic 
techniques are also useful when the energy propagation paths between the 
source and receiver positions are subject to ray bending on account of 
refraction, or when the energy propagation undergoes attenuation along ray 
paths as in emission CT. [Unfortunately, many imaging problems where 
refraction is encountered also suffer from diffraction effects (see Chap. 4).] 
As will be obvious from the discussion to follow, in algebraic methods it is 
essential to know ray paths that connect the corresponding transmitter and 
receiver positions. When refraction and diffraction effects are substantial 
(medium inhomogeneities exceed 10% of the average background value and 
the correlation length of these inhomogeneities is comparable to a wave- 
length), it becomes impossible to predict these ray paths. If algebraic 
techniques are applied under these conditions, we often obtain meaningless 
results. 

If the refraction and diffraction effects are small (medium inhomogeneities 
are less than 2 to 3% of the average background value and the correlation 
width of these inhomogeneities is much greater than a wavelength), in some 
cases it is possible to combine algebraic techniques with digital ray tracing 
techniques [And82], [And84a], [And84b] and devise iterative procedures in 
which we first construct an image ignoring refraction, then trace rays 
connecting the corresponding transmitter and receiver locations through this 
distribution, and finally use these rays to construct a more accurate set of 
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algebraic equations. Experimental verification of this iterative procedure for 
weakly refracting objects has been obtained [And84b]. 

Space limitations prevent us from discussing here the combined ray tracing 
and algebraic reconstruction algorithms. Our aim in this section is to merely 
introduce the reader to the algebraic approach for image reconstruction. First 
we will show how we may construct a set of linear equations whose 
unknowns are elements of the object cross section. The Kaczmarz method for 
solving these equations will then be presented. This will be followed by the 
various approximations that are used in this method to speed up its computer 
implementation. 

7.1 Image and Projection Representation 

Fig. 7.1: In algebraic methods a 
square grid is superimposed over 
the unknown image. Image values 
are assumed to be constant within 
each cell of the grid. (From 
[Ros82].) 

In Fig. 7.1 we have superimposed a square grid on the image f(x, y); we 
will assume that in each cell the function& y) is constant. Let fj denote this 
constant value in the jth cell, and let N be the total number of cells. For 
algebraic techniques a ray is defined somewhat differently. A ray is now a 
“fat” line running through the (x, y)-plane. To illustrate this we have shaded 
the ith ray in Fig. 7.1, where each ray is of width r. In most cases the ray 
width is approximately equal to the image cell width. A line integral will now 
be called a ray-sum. 

Like the image, the projections will also be given a one-index representa- 

wji for this cell = erea or ABC 
a2 
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tion. Let pi be the ray-sum measured with the ith ray as shown in Fig. 7.1. 
The relationship between the 4’s and pi’s may be expressed as 

2 Wijfj=Pi, i=l, 2, “‘,M (1) 
j=l 

where M is the total number of rays (in all the projections) and Wij is the 
weighting factor that represents the contribution of the jth cell to the ith ray 
integral. The factor Wij is equal to the fractional area of the jth image cell 
intercepted by the ith ray as shown for one of the cells in Fig. 7.1. Note that 
most of the wij’s are zero since only a small number of cells contribute to any 
given ray-sum. 

If M and N were small, we could use conventional matrix theory methods 
to invert the system of equations in (1). However, in practice N may be as 
large as 65,000 (for 256 x 256 images), and, in most cases for images of this 
size, M will also have the same magnitude. For these values of M and N the 
size of the matrix [ Wij J in (1) is 65,000 X 65,000 which precludes any 
possibility of direct matrix inversion. Of course, when noise is present in the 
measurement data and when A4 < N, even for small Nit is not possible to use 
direct matrix inversion, and some least squares method may have to be used. 
When both M and N are large, such methods are also computationally 
impractical. 

For large values of M and N there exist very attractive iterative methods 
for solving (1). These are based on the “method of projections” as first 
proposed by Kaczmarz [Kac37], and later elucidated further by Tanabe 
[Tan71]. To explain the computational steps involved in these methods, we 
first write (1) in an expanded form: 

wllfl + w12f2+ w13f3+ ’ ” + wINfN=Pl 

w21f1+ w22f2 + + * ’ ’ + w2NfN=tt)2 

wMlfl+wM2f2+ +“‘+wMNfN=PM. (2) 

A grid representation with N cells gives an image N degrees of freedom. 
Therefore, an image, represented by (f,, f2, + * * , fN), may be considered to 
be a single point in an N-dimensional space. In this space each of the above 
equations represents a hyperplane. When a unique solution to these equations 
exists, the intersection of all these hyperplanes is a single point giving that 
solution. This concept is further illustrated in Fig. 7.2 where, for the purpose 
of display, we have considered the case of only two variables f, and f2 

satisfying the following equations: 

wf1+ W12f2=P1 

W2lfi + w22f2 ‘P2. (3) 
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initial 
guess 

Fig. 7.2: The Kaczmarz method 
of solving algebraic equations is 
illustrated for the case of two 
unknowns. One starts with some 
arbitrary initial guess and then 
projects onto the line 
corresponding to the first 
equation. The resulting point is 
now projected onto the line 
representing the second equation. 
If there are only two equations, 
this process is continued back and 
forth, as illustrated by the dots in 
the figure, until convergence is 
achieved. (From [Ros82].) 

The computational procedure for locating the solution in Fig. 7.2 consists of 
first starting with an initial guess, projecting this initial guess on the first line, 
reprojecting the resulting point on the second line, and then projecting back 
onto the first line, and so forth. If a unique solution exists, the iterations will 
always converge to that point. 

For the computer implementation of this method, we first make an initial 
guess at the solution. This guess, denoted by f \O), f i”), * * * , f$, is represented 
vectorially by 7”) in the N-dimensional space. In most cases, we simply 
assign a value of zero to all the fi’S. This initial guess is projected on the 
hyperplane represented by the first equation in (2) givingpl), as illustrated in 
Fig. 7.2 for the two-dimensional case. p’) is projected on the hyperplane 
represented by the second equation in (2) to yieldp2) and so on. When?‘- *) 
is projected on the hyperplane represented by the ith equation to yield?‘), the 
process can be mathematically described by 

(4) 

where 4 = (Wii, Wi2, **a, WiN), and $i* i?i is the dot product of $i with 
itself. To see how (4) comes about we first write the first equation of (2) as 
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Fig. 7.3: The hyperplane w’, .p follows: 
= PI (represented by a Iine in this 
two-dimensional figure) is w’, * T=p,. (5) 
perpendicular to the vector w’,. 
(From fRos82J.) The hyperplane represented by this equation is perp+icular to the vector 

w’, . This is illustrated in Fig. 7.3, where the vector OD_ represents i& . This 
equation simply says that the projection of a vector OC (for any point C on 
the hyperplane) on the vector w’t is of constant length. The unit vector or/’ 
along w’, is given by 

(‘5) 

and the perpendicular distance of the hyperplane from the origin, which is 
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-. equal to the length of OA m Fig. 7.3, is given by z & 

(7) 

Now to get To) we have to subtract from p”) the vector a 

jw +o) -HZ (8) 

where the length of the vector s is given by 

pzI=Io~-lal 

=3(O) * z- 1 Z(. (9) 
Substituting (6) and (7) in this equation, we get 

(10) 

Since the direction of zis the same as that of the unit vector z, we can 
write 

z= IsI ou’= 3 (0) . - _ wlTpl w’,. 
WI * WI 

(11) 

Substituting (11) in (8), we get (4). 
As mentioned before, the computational procedure for algebraic recon- 

struction consists of starting with an initial guess for the solution, taking 
successive projections on the hyperplanes represented by the equations in (2), 
eventually yielding PM). In the next iteration, PM) is projected on the 
hyperplane represented by the first equation in (2), and then successively onto 
the rest of the hyperplanes in (2), to yieldr2M), and so on. Tanabe [Tan711 
has shown that if there exists a unique solutionx to the system of equations 
GY, then 

lim 3ckM) =x . (12) 
k-m 

A few comments about the convergence of the algorithm are in order here. 
If in Fig. 7.2 the two hyperplanes are perpendicular to each other, the reader 
may easily show that given for an initial guess any point in the (fi, fz)-plane, 
it is possible to arrive at the correct solution in only two steps like (4). On the 
other hand, if the two hyperplanes have only a very small angle between 
them, k in (12) may acquire a large value (depending upon the initial guess) 
before the correct solution is reached. Clearly the angles between the 
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hyperplanes considerably influence the rate of convergence to the solution. If 
the M hyperplanes in (2) could be made orthogonal with respect to one 
another, the correct solution would be arrived at with only one pass through 
the A4 equations (assuming a unique solution does exist). Although 
theoretically such orthogonalization is possible using, for example, the 
Gram-Schmidt procedure, in practice it is computationally not feasible. Full 
orthogonalization will also tend to enhance the effects of the ever present 
measurement noise in the final solution. Ramakrishnan et al. [Ram791 have 
suggested a pairwise orthogonalization scheme which is computationally 
easier to implement and at the same time considerably increases the speed of 
convergence. A simpler technique, first proposed in [Hou72] and studied in 
[Sla85], is to carefully choose the order in which the hyperplanes are 
considered. Since each hyperplane represents a distinct ray integral, it is quite 
likely that adjacent ray integrals (and thus hyperplanes) will be nearly 
parallel. By choosing hyperplanes representing widely separated ray inte- 
grals, it is possible to improve the rate of convergence of the Kaczmarz 
approach. 

A not uncommon situation in image reconstruction is that of an 
overdetermined system in the presence of measurement noise. That is, we 
may have M > N in (2) and pl, p2, . . . , pm corrupted by noise. No unique 
solution exists in this case. In Fig. 7.4 we have shown a two-variable system 
represented by three “noisy” hyperplanes. The broken line represents the 
course of the solution as we successively implement (4). Now the “solution” 
doesn’t converge to a unique point, but will oscillate in the neighborhood of 
the intersections of the hyperplanes. 

When M < N a unique solution of the set of linear equations in (2) doesn’t 
exist, and, in fact, an infinite number of solutions are possible. For example, 
suppose we have only the first of the two equations in (3) to use for 
calculating the two unknowns f, and f2; then the solution can be anywhere on 
the line corresponding to this equation. Given the initial guess PO) (see Fig. 
7.3), the best one could probably do under the circumstances would be to 
draw a projection from p”) on this line, and call the resulting 3c1) a solution. 
Note that the solution obtained in this manner corresponds to that point on the 
line which is closest to the initial guess. This result has been rigorously 
proved by Tanabe [Tan711 who has shown that when M < N, the iterative 
approach described above converges to a solution, call it 3;) such that IPO’ - 3;l is minimized. 

Besides its computational efficiency, another attractive feature of the 
iterative approach presented here is that it is now possible to incorporate into 
the solution some types of a priori information about the image one is 
reconstructing. For example, if it is known a priori that the image f (x, y) is 
nonnegative, then in each of the solutionsJt(k), successively obtained by using 
(4), one may set the negative components equal to zero. One may similarly 
incorporate the information that f (x, v) is zero outside a certain area, if this is 
known. 
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Fig. 7.4: Illustrated here is the 
case when the number of 
equations is greater than the 
number of unknowns. The lines 
don’t intersect at a single unique 
point, because the observations 
p,. p2, p, have been assumed to 
be corrupted by noise. No unique 
solution exists in this case, and 
the final solution will oscillate in 
the neighborhood of intersections 
of the three lines. (From 
[Ros82].) 

In applications requiring a large number of views and where large-sized 
reconstructions are made, the difficulty with using (4) can be in the 
calculation, storage, and fast retrieval of the weight coefficients w,. Consider 
the case where we wish to reconstruct an image on a 100 x 100 grid from 
100 projections with 150 rays in each projection. The total number of 
weights, w,, needed in this case is 108, which is an enormous number and 
can pose problems in fast storage and retrieval in applications where 
reconstruction speed is important. This problem is somewhat eased by 
making approximations, such as considering WV, to be only a function of the 
perpendicular distance between the center of the ith ray and the center of the 
jth cell. This perpendicular distance can then be computed at run time. 

To get around the implementation difficulties caused by the weight 
coefficients, a myriad of other algebraic approaches have also been 
suggested, many of which are approximations to (4). To discuss some of the 
more implementable approximations, we first recast (4) in a slightly different 
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form: 

f(i) =f(i- 1) + pi wij 
J J 

i wt 
k=L 

where 

qi=T(i- 1) . q 

(13) 

k=l 

(15) 

These equations say that when we project the (i - 1)th solution onto the ith 
hyperplane [ ith equation in (2)] the gray level of the jth element, whose 
current value is f!‘- l) 

J ’ 
is obtained by correcting its current value by AJJ’), 

where 

Note that while pi is the measured ray-sum along the ith ray, qi may be 
considered to be the computed ray-sum for the same ray based on the (i - 
1)th solution for the image gray levels. The correction Af, to the jth cell is 
obtained by first calculating the difference between the measured ray-sum and 
the computed ray-sum, normalizing this difference by CF==, w&, and then 
assigning this value to all the image cells in the ith ray, each assignment being 
weighted by the corresponding w,. 

With the preliminaries presented above, we will now discuss three 
different computer implementations of algebraic algorithms. These are 
represented by the acronyms ART, SIRT, and SART. 

7.2 ART (Algebraic Reconstruction Techniques) 

In many ART implementations the wik’s in (16) are simply replaced by l’s 
and O’s, depending upon whether the center of the kth image cell is within the 
ith ray. This makes the implementation easier because such a decision can 
easily be made at computer run time. In this case the denominator in (16) is 
given by CF==, wi = Ni which is the number of image cells whose centers 
are within the ith ray. The correction to the jth image cell from the ith 
equation in (2) may now be written as 

Af(‘) mpi- qi 
J 

Ni 
(17) 
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for all the cells whose centers are within the ith ray. We are essentially 
smearing back the difference (pi - qi)/Ni over these image cells. In (17), 
qi’s are calculated using the expression in (15), except that one now uses the 
binary approximation for wik’s. 

The approximation in (17), although easy to implement, often leads to 
artifacts in the reconstructed images, especially if Ni isn’t a good approxima- 
tion to the denominator. Superior reconstructions may be obtained if (17) is 
replaced by 

Afji)=pi-?% 
Li Ni 

where Li is the length (normalized by 6, see Fig. 7.1) of the ith ray through 
the reconstruction region. 

ART reconstructions usually suffer from salt and pepper noise, which is 
caused by the inconsistencies introduced in the set of equations by the 
approximations commonly used for Wik’s. The result is that the computed ray- 
sums in (15) are usually poor approximations to the corresponding measured 
ray-sums. The effect of such inconsistencies is exacerbated by the fact that as 
each equation corresponding to a ray in a projection is taken up, it changes 
some of the pixels just altered by the preceding equation in the same 
projection. The SIRT algorithm described briefly below also suffers from 
these inconsistencies in the forward process [appearing in the computation of 
qi’s in (16)], but by eliminating the continual and competing pixel update as 
each new equation is taken up, it results in smoother reconstructions. 

It is possible to reduce the effects of this noise in ART reconstructions by 
relaxation, in which we update a pixel by o * AJ;‘), where (Y is less than 1. In 
some cases, the relaxation parameter (Y is made a function of the iteration 
number; that is, it becomes progressively smaller with increase in the number 
of iterations. The resulting improvements in the quality of reconstruction are 
usually at the expense of convergence. 

7.3 SIRT (Simultaneous Iterative Reconstructive Technique) 

In this approach, which at the expense of slower convergence usually leads 
to better looking images than those produced by ART, we again use (17) or 
(18) to compute the change Afji) in the jth pixel caused by the ith equation in 
(2). However, the value of the jth cell isn’t changed at this time. Before 
making any changes, we go through all the equations, and then only at the end 
of each iteration are the cell values changed, the change for each cell being 
the average value of all the computed changes for that cell. This constitutes 
one iteration of the algorithm. In the second iteration, we go back to the first 
equation in (2) and the process is repeated. 
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7.4 SART (Simultaneous Algebraic Reconstruction Technique) 

We will now discuss a variation on the algebraic approaches discussed 
above that seems to combine the best of ART and SIRT. This technique, first 
reported in [And84a], yields reconstructions of good quality and numerical 
accuracy in only one iteration. Here are the main features of SART: First, to 
reduce errors in the approximation of ray integrals of a smooth image by 
finite sums, the traditional pixel basis is abandoned in favor of bilinear 
elements. Also, for a circular reconstruction region, only partial weights are 
assigned to the first and last picture elements on the individual rays. To 
further reduce the noise resulting from the unavoidable but now presumably 
considerably smaller inconsistencies with real projection data, the correction 
terms are simultaneously applied for all the rays in one projection; this is in 
contrast with the ray-by-ray updates in ART. In addition, a heuristic 
procedure is used to improve the quality of reconstructions: a longitudinal 
Hamming window is used to emphasize the corrections applied near the 
middle of a ray relative to those applied near its ends. 

In what follows we will describe in more detail the individual steps outlined 
above. The contribution that each step makes in improving the overall 
accuracy of me proposed procedure will be illustrated with reconstructions of 

Fig. 7.5: (a) The Shepp and the test image of Fig. 7.5. Note that this image differs slightly from a similar 
Logan head phantom with a 
subdural hematoma. (b) The gray 

image in Chapter 3 by the presence of a “

subdural 

hematoma,

” 

which is a 

level distribution of the Shepp small ellipse right next to the “

skull

” 

in the lower right-hand part. All these 
and Logan phantom. (From reconstructions were carried out on a 128 x 128 sampling lattice with 100 
[Kak84J.) projections of 127 rays each. 

b -1.0-0.8 -0.a -0.4 -0.2 0.0 0.2 0.4 0.0 0.8 1.0 
x 
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7.4.1 Modeling the Forward Projection Process 

In (l), projection data were modeled by 

Pi=5 wijfi9 i=l, 2, -**, M. 
j=l 

(19) 

This is a good model for the projection process if for Wij’s we use the 
theoretically dictated values-which, as mentioned before, is hard to do for 
various reasons. 

To seek alternative methods for modeling the projection process, the 
relationship between a continuous image and the discrete projection data can 
be expressed by the following general form 

Pi=Rif(X, I’)= Sy, lr, f(X, y)G(ri(X, y)) dx dy (20) 

where 

ri(X, Y)=O (21) 

is the equation of the ith ray and Ri is the projection operator along the ray. 
The integral on the right-hand side serves as the definition of the projection 
operator. 

Now suppose we assume that in an expansion for the imagef(x, y), we use 
basis functions bj(x, y) and that a good approximation tof(x, y) is obtained 
by using N of them. This assumption can be represented mathematically by 

f(X, Y)=ftXs Y) E 5 gjbjCx, Y) (22) 
j=l 

where gj’s are the coefficients of expansion; they form a finite set of numbers 
which describe the image f(x, y) relative to the chosen basis set bj(X, y). 

Substituting (22) in (20), we can write for the forward process 

Pi=Rif(x, Y)F”RJ(X, Y)=g gjRibj(x, Y)=i &au 
j=l j=l 

(23) 

where a, represents the line integral of bj(X, y) along the ith ray. This 
equation has the same basic form as (l), yet it is more general in the sense that 
gi’s aren’t constrained to be image gray level values over an array of points. 
Of course, the form here reduces to (1) if for bj’s we use the following pixel 
basis that is obtained by dividing the image frame into N identical subsquares; 
these are referred to as pixels and identified by the index j for 1 5 j 5 N: 

bj(x, Y)= 
I 

1 inside the jth pixel 
o everywhere else. (24) 
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In keeping with the nature of J’s in (l), gj’s with these basis functions 
represent the average off (x, y) over the jth pixel and Ribj(X, y) represents 
the length of the intersection of tbe ith ray with the jth pixel. Although (20) 
implies rays of zero width, if we now associate a finite width with each ray, 
the elements of the projection matrix will represent the areas of intersection of 
these ray strips with the pixels. 

In SART, superior reconstructions are obtained by using a model of the 
forward projection process that is more accurate than what can be obtained by 
the choice of pixel basis functions-this is done by using bilinear elements 
which are the simplest higher order basis functions. The basis functions 
obtained from bilinear elements are pyramid shaped, each with a support 
extending over a square region the size of four pixels. It can be shown that the 
gj’s appearing in (22) for the case of bilinear elements are the sample values 
of the image functionf(x, y) on a square lattice. It can further be shown that 
whereas the pixel basis leads to a discontinuous image representation, the 
bilinear elements allow a continuous form of p(x, y) to be regenerated for 
computation. However, finding the exact ray integrals across such bilinear 
elements [as called for by Ribj(x, y) in (23)] for a large number of rays is a 
time-consuming task and we will use an approximation. 

Rather than try to find separately the individual coefficients aij for a 
particular ray, we approximate the overall ray integral RJ(X, y) by a finite 
sum involving a set of Mi equidistant points {f^(sim)}, for 1 5 m I Mi 

Fig. 7.6: The ray-sum equations 
for a set of equidistant points 

[Lytl(O] (see Fig. 7.6): 

along a straight line cut by the Mi 
circular reconstruction region. Pi” x J(Sim)AS* (25) 
(From [Kak84J.) m=l 
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The value f(Sim) is determined from the values gj of f(x, y) on the four 
neighboring points of the sampling lattice, i.e., by bilinear interpolation. We 
write 

%(Sim) = i dijrngj for m= 1, 2, .a*, Mi. (26) 
j=1 

The coefficient dti,,, is therefore the contribution that is made by the jth image 
sample to the mth point on the ith ray. Combining (25) and (26), we obtain an 
approximation to the ray integral pi as a linear function of the image samples 
gj: 

m=l j=I 

Mi 

= 2 C dij,gjAS for 1lisJ 
j=l m=l 

=i aijgj 
j=l 

(27) 

(28) 

where the coefficients au represent the net effect of the linear transforma- 
tions. They are determined as the sum of the contributions from different 
points along the ray: 

Mi 
aij= C dijmAS. (30) 

m=l 
Therefore, au is proportional to the sum of contributions made by the jth 
image sample to all the points on the ith ray. It is important to the overall 
accuracy of the model that for m = 1 and for m = Mi, i.e., for the first and 
last points of the ray within the reconstruction circle, the weights are adjusted 
so that X7= i ab equals the actual physical length Li. 

One certainly has latitude about selecting the step size As; setting it equal 
to half the spacing of the sampling lattice provides a good trade-off between 
the accuracy of representation and computational cost. 

7.4.2 Implementation of the Reconstruction Algorithm 

As mentioned before, the results of SART implementation will be shown 
on 128 x 128 matrices using 100 projections, each with 127 rays. In the 
model of (29), this corresponds to N = 16,384 picture elements and an 
overall number of rays I = 12,700. Note that the system of equations is 
underdetermined by about 25 % , but then the reconstruction circle covers only 
about 75% of the area of the square sampling lattice. 

With the au’s determined by the method just described, the reader will now 
be taken through a series of steps that are part of the SART implementation. 
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First, it will be shown that even with the superior forward projection 
modeling by the use of bilinear elements, one doesn

’

t 

want to carry out a 
sequential implementation of the reconstruction algorithm. 

A sequential implementation can be carried out by using the update 
formula of (4), reexpressed here in terms of SART symbols: 

(31) 

Fig. 7.1: Reconstruction from 
one iteration of sequential ART. 
(a) Image. (b) Line plot through 
the three small tumors (for y = 
- 0.605). (From [And84a].) 

where ZJ denotes the ith row vector of the array aij. As described before, the 
estimate g(k) of the image vector is updated after each ray has been 
considered. We set the initial estimate g

’

(O) 

to zero, and we say that one 
iteration of the algebraic reconstruction technique is completed when all I 
rays, i.e., all I ray-sum equations, have been used exactly once. Owing to 
reasons discussed in Section 7.1, for sequential processing the projection data 
are ordered in such a manner that the angle between the projections 
considered successively is kept large; for the reconstructions shown here that 
were obtained with sequential updating, this angle was 73.8

”

. 

Fig. 7.7(a) illustrates the reconstruction of the test image for one iteration 
of the sequential implementation. In order to avoid streak artifacts in the final 
image, the correction terms for the first few projections are de-emphasized 
relative to those for projections considered later on. The image has been 
thresholded to the gray level range 0.95-1.05 to illustrate the finer detail. 
Note that even the larger structures are buried in the salt and pepper noise 
present when no form of relaxation or smoothing is used. Fig. 7.7(b) shows a 
line plot through the three small tumors of the phantom (the profile shown is 
along the line y = - 0.605). We observe that the amplitude variations of the 
noise largely exceed the density differences characterizing these structures. 
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It will now be shown that superior results are obtained if instead of 
sequentially updating pixels on a ray-by-ray basis we simultaneously apply to 
a pixel the average of the corrections generated by all the rays in a projection. 
Stated in a bit more detail, this is what we want to do: For the first ray in a 
projection we compute as before the corrections to be made at every pixel. 
Instead of actually applying these corrections, we store them in a separate 
array to be called the correction array (the size of which is the same as that of 
the image array). Then we take up the next ray and add the pixel updates 
generated by this ray to the correction array. And then the next ray, and so 
on. After we are through all the rays in a projection, we add the correction 
array (or some fraction thereof) to the image array. This entire process is 
repeated with every projection. Fig. 7.8(a) illustrates the reconstruction 
obtained with this method. The precise formula that was used in the 
reconstruction in Fig. 7.8 for updating the pixel values can be stated as 
follows: 
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Fig. 1.8: Reconstruction from 
one iteration of SART. (a) 
Image. (b) Line plot through the 
three small tumors (for y = 
- 0.605). (From [And84a].) 

where the summation with respect to i is over the rays intersecting the jth 
image element for a given scan direction. 

Compared to the reconstruction of Fig. 7.7 for the sequential scheme, the 
simultaneous method offers a reduction in the amplitude of the noise. In 
addition, the noise in the reconstructed image has become more slowly 

1.050 1.050 

1.037 1.037 

1.025 1.025 

1.012 1.012 

1.000 1.000 

.9875 - .9875 - 

.9750 - .9750 - 

.9625. .9625. 

b .9500 1 
.9500 7 I I 

b -1.00 -.750 -.500 -.250 0.00 -1.00 -.750 -.500 -.250 0.00 .250 .250 .500 ,750 1 .500 ,750 1 00 

290 COMPUTERIZED TOMOGRAPHIC IMAGING 



Fig. 7.9: The longitudinal 
Hamming window for a set of 
straight rays. (From [And84a].) 

undulating compared to the previous salt and pepper appearance. This 
technique maintains the rapid convergence of ART-type algorithms while at 
the same time it has the noise suppressing features of SIRT. AS with SIRT, 
the simultaneous implementation does require the storage of an additional 
array for the correction terms. 

The last step, heuristic in nature, in SART consists of modifying the back- 
distribution of correction terms by a longitudinal Hamming window. The idea 
of the window is illustrated in Fig. 7.9. The uniform back-distribution 
according to the coefficients au is replaced by a weighted version. This 
corresponds to replacing the correction term 

pi _ a’,T-g’(k) 
aij 

fj aij 

(33) 

j=l 

in (32) by a weighted correction term 

*, pi - ZTzck) 

” 5 Qij 

(34) 

j=l 

where the weighting coefficients tij are given by [compare with (30)] 

Mi 
tij= C hi,dij,AS* 

m=l 
(35) 

The sequence hi,, for 1 I m  I A4i, is a Hamming window of length A4i. 
Note that the length of the window varies according to the number of points 
Mi describing the part of the ray inside the reconstruction circle. 

The weighted back-distribution of corrections emphasizes the central 
portions of rays in relation to portions closer to the periphery. Fig. 7.10 
illustrates a reconstruction of the test image after one iteration with the 
longitudinal window in conjunction with the simultaneous scheme previously 
described. We see an improvement over the reconstructions of Figs. 7.7 and 
7.8: the noise is practically gone and all the structures can be fairly well 
distinguished. If we hadn’t applied the corrections in a simultaneous scheme 
but incorporated the longitudinal Hamming window only for the sequential 
implementation, we would have arrived at the noisy reconstruction illustrated 
in Fig. 7.11. 

An important question that remains to be answered is: What happens when 
we go through iterations with, say, the simultaneous implementation; 
meaning that after we have made a reconstruction by going through all the 
projections once, we go through them all once again using the reconstruction 
of Fig. 7.10 as our initial solution; and then continue iterating in like fashion? 
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Fig. 7.10: Reconstruct ion from 
one iteration of SART with a  
longitudinal Hamming window. 
(a) Image. (b) Line plot through 
the three small tumors (fbr y = 
- 0.605). (From [And84a].) 

In Figs. 7.12 and 7.13, we have shown the reconstructions obtained with two 
and three iterations, respectively. As is evident from the reconstructions, we 
do gain more contrast, although at the cost of increased salt and pepper noise. 
All reconstructions shown represent the raw output from the algorithms with 
no postprocessing applied to suppress noise. 

For the purpose of comparison, we have included in Fig. 7.14 the 
reconstruction obtained by using a convolution-backprojection algorithm. 
Comparing this with Fig. 7.10, we see that the SART reconstruction with one 
iteration is quite similar, although with further iterations, as displayed in 
Figs. 7.12 and 7.13, we see an increased amplitude of the salt and pepper 
noise, which is probably an indication of remaining inconsistencies in the 
model used for the forward projection process. 

7.5 Bibliographic Notes 

The earliest expositions on algebraic reconstruction were by Gordon et al. 
[Gor70], [Gor71], [Gor74], Herman et al. [Her71], [Her73], [Her77], and 
Budinger and Gullberg [Bud74]. The reader is also referred to the book by 
Herman [Her801 for an exhaustive treatment of the subject. 

When binary values are chosen for the weights wU in (16) in ART, i.e., wg 
is set equal to 1 if the center of thejth pixel falls within the strip of the ith ray 
and 0 if not, it becomes necessary to adjust the width of each ray according to 
the orientation of the projection [Gor74], [Her73], [Opp75]. 

Attempts have been made to reduce the salt and pepper noise associated 
with ART-type reconstructions by increasing the number of rays per view 
[Smi77]. When the number of rays per view is increased, many pixels are 
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Fig. 7.11: Reconstruction from 
one iteration of sequential ART 
with a longitudinal Hamming 
window. (a) Image. (b) Line plot 
through the three small tumors 
(for y = -0.605). (From 
[AndBla].) 

Fig. 7.12: Reconstruction from 
two iterations of SART with a 
longitudinal Hamming window. 
(a) Image. (b) Line plot through 
the three small tumors (for y = 
- 0.605). (From [And84a].) 
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intersected by several rays in each projection. This results in the averaging of 
possible errors committed in the correction procedure such as the one given 
by (4). Common practice is to have a system with about four times as many 
equations as unknown pixel values [Her80], [Her78], [She74]. The computa- 
tional cost, however, is increased directly with the number of rays processed. 
An additional method has been to use a relaxation factor h < 1 [Gor74], 
[Her80], [Her76], [Her78], [Hou72], [Swe73] which, although reducing the 
salt and pepper noise, increases the number of iterations required for 
convergence. 

The SART algorithm was first reported in [And84a]. In contrast with the 
bilinear elements used for SART, the pixel basis is common to much 
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Fig. 7.13: Reconstruction from 
three iterations of SART with a 
longitudinal Hamming window. 
(a) Image. (b) Line plot through 
the three small tumors (for y = 
- 0.605). (From /And84a].) 

Fig. 7.14: Convolution-back- 
projection reconstruction of the 
test image. (a) Image. (b) Line 
plot through the three small 
tumors (for y = - 0.605). (From 
[And84a].) 
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literature published on algebraic techniques [Din79], [Gi172], [Gor74], 
[Gor70], [HergO], [Her76], [Her78], [Her73], [Hou72], [Opp75], [She74]. 

The error-correcting procedure of the basic ART algorithm as given by (4) 
is discussed in [Gor74], [GonO], [HergO], [Her76], [Her78], [Her73], 
[Hou72]. 

As first shown by Hounsfield [Hou72], in order to improve the 
convergence of a sequential algebraic algorithm one should order the 
projections in such a manner that successive projections are well separated. 
This he justified on the basis of high correlation between the information in 
neighboring projections. Later the scheme was demonstrated to have a deeper 
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mathematical foundation as a tool for speeding up the convergence of ART- 
type algorithms. (The proof relies on a continuous formulation of ART, as 
shown by Hamaker and Solmon [Ham78].) Ramakrishnan et al. [Ram791 
have shown how by orthogonalization of the algebraic equations we can 
increase the speed of convergence of a reconstruction algorithm. 

The SIRT algorithm was first proposed by Gilbert [Gi172]. A simplified 
form of the simultaneous technique was used by Oppenheim in [Opp75]. 
However, the scope of the implementation as described by (32) is much 
wider. The method can be used advantageously in the general image 
reconstruction problem for curved rays with overlapping and nonoverlapping 
ray strips as well as in conjunction with any image representation, provided 
the forward process can be expressed in the form of (23). 

A combination of algebraic reconstruction and digital ray tracing appears 
ideal for imaging lightly refracting objects [Cha79], [Chagl]. A survey of 
digital ray tracing and ray linking for this purpose is presented in [And82]. If 
a refracting object has special symmetries, then as shown by Vest [Ves75] it 
may be possible to reconstruct the object without ray tracing. The reader is 
referred to [And84b] for experimental demonstrations of how algebraic 
reconstruction can be combined with digital ray tracing for the cross-sectional 
imaging of lightly refracting objects. 
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