
5 Aliasing Artifacts and Noise in CT 
Images 

The errors discussed in the last chapter are fundamental to the projection 
process and depend upon the interaction of object inhomogeneities with the 
form of energy used. The effects of these errors can’t be lessened by simply 
increasing the number of measurements in each projection or the total number 
of projections. 

This chapter will focus on reconstruction errors of a different type: those 
caused either by insufficiency of data or by the presence of random noise in 
the measurements. An insufficiency of data may occur either through 
undersampling of projection data or because not enough projections are 
recorded. The distortions that arise on account of insufficiency of data are 
usually called the aliasing distortions. Aliasing distortions may also be caused 
by using an undersampled grid for displaying the reconstructed image. 

5.1 Aliasing Artifacts 

We will discuss aliasing from two points of view. First we will assume 
point sources and detectors and show the artifacts due to aliasing. With this 
assumption it is easy to show the effects of undersampling a projection, using 
too small a number of views, and choosing an incorrect reconstruction grid or 
filter. We will then introduce detectors and sources of nonzero width and 
discuss how they in effect help reduce the severity of aliasing distortions. 

5.1.1 What Does Aliasing Look Like? 

Fig. 5.1 shows 16 parallel beam reconstructions of an ellipse with various 
values of K, the number of projections, and N, the number of rays in each 
projection. The projections for the ellipse were generated as described in 
Chapter 3. The gray level inside the ellipse was 1 and the background 0 and 
the data were generated assuming a point source and point detector. To bring 
out all the artifacts, the reconstructed images were windowed between 0.1 
and - 0.1. (In other words, all the gray levels above 0.1 were set at white and 
all below -0.1 at black.) The images in Fig. 5.1 are displayed on a 128 x 
128 matrix. Fig. 5.2 is a graphic depiction of the reconstructed numerical 
values on the middle horizontal lines for two of the images in Fig. 5.1. From 
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Fig. 5.1: Sixteen reconstructions 
of an ellipse are shown for 
different values of K, the number 
of projections, and N, the 
number of rays in each 
projection. In each case the 
reconstructions were windowed to 
emphasize the distortions. 
(Courtesy of Carl Crawford of 
the General Electric Medical 
Systems Division in Milwaukee, 
WI.) 

Figs. 5.1 and 5.2 the following artifacts are evident: Gibbs phenomenon, 
streaks, and Moire patterns. 

We will now show that the streaks evident in Fig. 5.1 for the cases when N 
is small and K is large are caused by aliasing errors in the projection data. 
Note that a fundamental problem with tomographic images in general is that 
the objects (in this case an ellipse), and therefore their projections, are not 
bandlimited. In other words, the bandwidth of the projection data exceeds the 
highest frequency that can be recorded at a given sampling rate. To illustrate 
how aliasing errors enter the projection data assume that the Fourier 
transform Se(f) of a projection PO(~) looks as shown in Fig. 5.3(a). The 
bandwidth of this function is B as also shown there. Let

’

s 

choose a sampling 
interval 7 for sampling the projection. By the discussion in Chapter 2, with 
this sampling interval we can associate a measurement bandwidth W which is 
equal to l/27. We will assume that W < B. It follows that the Fourier 
transform of the samples of the projection data is given by Fig. 5.3(b). We 
see that the information within the measurement band is contaminated by the 
tails (shaded areas) of the higher and lower replications of the original 
Fourier transform. This contaminating information constitutes the aliasing 
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Fig. 5.2: The center lines of the errors in the sampled projection data. These contaminating frequencies 
reconstructions shown in Fig. 5. I 
for (a) N = 64, K = 512  and(b) 

constitute the aliased spectrum. 
N = 512, K = 512 areshown Backprojection is a linear process so the final image can be thought to be 
here. (From fCra79J.) made up of two functions. One is the image made from the bandlimited 

projections degraded primarily by the finite number of projections. The 
second is the image made from the aliased portion of the spectrum in each 
projection. 

The aliased portion of the reconstruction can be seen by itself by 
subtracting the transforms of the sampled projections from the corresponding 
theoretical transforms of the original projections. Then if this result is filtered 
as before, the final reconstructed image will be that of the aliased spectrum. 
We  performed a computer simulation study along these lines for an elliptical 
object. In order to present the result of this study we first show in Fig. 5.4(a) 
the reconstruction of the ellipse for N = 64. (The number of projections was 
512, which is large enough to preclude any artifacts due to insufficient 
number of views, and will remain the same for the discussion here.) We  have 
subtracted the transform of each projection for the N = 64 case from the 
corresponding transform for the N = 1024 case. The latter was assumed to 
be the true transform because the projections are oversampled (at least in 
comparison to the N = 64 case). The reconstruction obtained from the 
difference data is shown in Fig. 5.4(b). Fig. 5.4(c) is the bandlimited image 
obtained by subtracting the aliased-spectrum image of Fig. 5.4(b) from the 
complete image shown in Fig. 5.4(a). Fig. 5.4(c) is the reconstruction that 
would be obtained provided the projection data for the N = 64 case were 
truly bandlimited (i.e., did not suffer from aliasing errors after sampling). 
The aliased-spectrum reconstruction in Fig. 5.4(b) and the absence of streaks 
in Fig. 5.4(c) prove our point that when the number of projections is large, 
the streaking artifacts are caused by abasing errors in the projection data. 

We  will now present a plausible argument, first advanced by Brooks et al. 
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Fig. 5.3: If a  projection (a) is [Bro79], for when a streak may be dark and when it may be light. Note that 
sampled at below the Nyquist rate 
(28 in this case), then aliasing 

when an object is illuminated by a source, a projection of the object is formed 
will occur. As shown in (b) the at the detector array as shown in Fig. 5.5. If the object has a discontinuity at 
result is aliasing or spectrum its edges, then the projection will also. We  will now show how the position of 
foldover. (Adapted from 
[Cra79].) 

this discontinuity with respect to the detector array has a bearing on the sign 
of the aliasing error. When the filtered projection is backprojected over the 
image array the sign of the error will determine the shade of the streak. 

Consider sampling a projection described by 

x>o 
elsewhere. 

The Fourier transform of this function is given by 

- 2j 
F(w)=-. 

w 

(1) 

(2) 

For the purpose of sampling, we can imagine that the function f is multiplied 
by the function 

h(x)= i 6(x-/w) 
k=-m 

(3) 
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Fig. 5.4: (a) Reconstruction of 
an ellipse with N = 64 and K = 

where T represents the sampling interval of the projection. The Fourier 

5 12. (b) Reconstruction .from only transform of the sampling function is then given by 
the aliased spectrum. N&e that - 
the streaks exactly match those in 
(a). (c) Image obtained by 
subtracting (b) from (a). This is 

H(w) = 2 6(w - kw,,,) 
k=-m 

(4) 

the reconstruction that would be 
obtained provided the data for 
the N = 64 case were truly 
bandlimited. (From fCra79/.) 

where wN = 27r/T. Clearly, the Fourier transform of the sampled function is 
a convolution of the expressions in (2) and (4): 

F sampkdw = ,ga s * 
N 

This function is shown in Fig. 5.6(a). Before these projection data can be 
backprojected they must be filtered by multiplying the Fourier transform of 
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**/- Detector Array 

Fig. 5.5: The projection of an 
object with sharp discontinuities 
will have significant high 

f requency energy. 

Fig. 5.6: The aliasing due  to 
undersampled projections is 
illustrated here. (a) shows the 
Fourier transform of an  edge 
discontinuity. The al iased 
port ions of the spectrum are 
shaded.  (b) shows an  
approximation to the error when 
the sampling grid is al igned with 
the discontinuity and  (c) shows 
the error when the discontinuity 
is shifted by l/4 of the sampling 
interval. Note the magni tude of 
the error changes by more than a  
factor of 3  when the sampling 
grid shifts. 

the projection by ( w ) /27r. The filtered projection is then written 

To study the errors due to aliasing, we will only consider the terms for k = 
1 and k = - 1, and assume that the higher order terms are negligible. Note 
that the zeroth order term is the edge information and is part of the desired 
reconstruction; the higher order terms are part of the error but will be small 
compared to the k = + 1 terms at low frequencies. The inverse Fourier 
transform of these two aliased terms is written as 

(7) 

and is shown in Fig. 5.6(b). 
Now if the sampling grid is shifted by l/4 of the sampling 

Fourier transform is multiplied by e+jwN(r14) or 

Fshifid(W ) = 5 !d - ‘j ~ ejk~,(T/4. 
k=-cc 2?r w+kWN 

interval its 

(8) 

This can be evaluated for the k = 1 and k = - 1 terms to find the error 
integral is 

e-h dw (9) 

(a) 
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and is shown in Fig. 5.6(c). If the grid is shifted in the opposite direction, 
then the error will be similar but with the opposite sign. 

As was done earlier in this section, consider the sampled projection to 
consist of two components: the true projection and the error term. The true 
projection data from each view will combine to form the desired image; the 
error in each projection will combine to form an image like that in Fig. 
5.4(b). A positive error in a projection causes a light streak when the data are 
backprojected. Likewise, negative errors lead to dark streaks. As the view 
angle changes the size of the ellipse’s “shadow” changes and the 
discontinuity moves with respect to the detector array. In addition, where the 
curvature of the object is large, the edge of the discontinuity will move 
rapidly which results in a large number of streaks. 

The thin streaks that are evident in Fig. 5.1 for the cases of large N and 
small K (e.g., when N = 512 and K = 64) are caused by an insufficient 
number of projections. It is easily shown that when only a small number of 
filtered projections of a small object are backprojected, the result is a star- 
shaped pattern. This is illustrated in Fig. 5.7: in (a) are shown four 
projections of a point object, in (b) the filtered projections, and in (c) their 
backprojections. 

Fig. 5.6: Continued. 

The number of projections should be roughly equal to the number of rays in 
each projection. This can be shown analytically for the case of parallel 
projections by the following argument: By the Fourier Slice Theorem, the 
Fourier transform of each projection is a slice of the two-dimensional Fourier 
transform of the object. In the frequency domain shown in Fig. 5.8, each 
radial line, such as AiA2, is generated by one projection. If there are Mproj 
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reconstruction. (From [Ros82/.) 

Fig. 5.7: The backprojecfion 
operation introduces a 
star-shaped pattern to the 

projections uniformly distributed over 180”, the angular interval 6 between 
successive radial lines is given by 

a=-. 
Mp*oj 

(10) 

If r is the sampling interval used for each projection, the highest spatial 
frequency W  measured for each projection will be 

w= l/27. (11) 

This is the radius of the disk shown in Fig. 5.8. The distance between 
consecutive sampling points on the periphery of this disk is equal to A& and 
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Fig. 5.8: Frequency domain is given by 
parameters pertinent to parallel 
projection data. (From [Kak84J.) 1 7r 

A2Bz= W6=- - . 
27 Mproj 

(12) 

If there are NraY sampling points in each projection, the total number of 
independent frequency domain sampling points on a line such as AlAz will 
also be the same. Therefore, the distance E between any two consecutive 
sampling points on each radial line in Fig. 5.8 will be 

(13) 

Because in the frequency domain the worst-case azimuthal resolution should 
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be approximately the same as the radial resolution, we must have 

which is obtained by equating (12) and (13). Equation (14) reduces to 

which implies that the number of projections should be roughly the same as 
the number of rays per projection. 

The reader may have noticed that the thin streaks caused by an insufficient 
number of projections (see, e.g., the image for N = 512 and K = 64 in Fig. 
5.1) appear broken. This is caused by two-dimensional aliasing due to the 
display grid being only 128 x 128. When, say, N = 512, the highest 
frequency in each projection can be 256 cycles per projection length, whereas 
the highest frequency that can be displayed on the image grid is 64 cycles per 
image width (or height). The effect of this two-dimensional aliasing is very 
pronounced in the left three images for the N = 512 row and the left two 
images for the N = 256 row in Fig. 5.1. As mentioned in Chapter 2, the 
artifacts generated by this two-dimensional aliasing are called Moire patterns, 
These artifacts can be diminished by tailoring the bandwidth of the 
reconstruction kernel (filter) to match the display resolution. 

From the computer simulation and analytical results presented in this 
section, one can conclude that for a well-balanced N x N reconstructed 
image, the number of rays in each projection should be roughly N and the 
total number of projections should also be roughly N. 

5.1.2 Sampling in a Real System 

In the previous section we described aliasing errors caused by undersam- 
pling the projections, number of views, and the reconstruction grid. In 
practice, these errors are somewhat mitigated by experimental considerations 
like the size of the detector aperture and the nonzero size of the x-ray source. 
Both these factors bring about a certain smoothing of the projections, and a 
consequent loss of information at the highest frequencies. In this section, we 
will demonstrate how these factors can be taken into account to determine the 
“optimum rate” at which a projection should be sampled. 

In order to analyze the effect of a nonzero size for the detector aperture, 
note that this effect can be taken into account by convolving the ideal 
projection with the aperture function. Let the following function represent an 
aperture that is Td units wide (we are only considering aperture widths along 
the projection, the width along the perpendicular direction being irrelevant to 
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our discussion): 

1 Td 
a(x) = 

1x1 I- 
2 

0 elsewhere. 
(16) 

The Fourier transform of this aperture function is given by 

A (co) = Td sine (wTd/2). (17) 

In the frequency domain, the Fourier transform of the ideal projection is 
multiplied by this function, implying that we are in effect passing the 
projection through a low pass filter (LPF). Since the first zero of A(w) is 
located at 2n/Td, it is not unreasonable to say that the effect of A(w) is to 
filter out all frequencies higher than 

2?r 
“$JF=- . 

Td 
(18) 

In other words, we are approximating the aperture function in the frequency 
domain by 

(19) 

Let’s say that we are using an array of detectors to measure a projection 
and that the array is characterized by T, as the center-to-center spacing 
between the detectors. Measurement of the projection data is equivalent to 
multiplication of the low pass filtered projection with a train d(x) of 
impulses, where d(x) is given by 

d(x)= g 6(x-nT,) (20) 
“=-Go 

whose Fourier transform is 

D(w)=$ i 6 27rn 

s n=-ca ( > w-- . T 
s 

(21) 

In the frequency domain the effect of the detector aperture and sampling 
distance is shown in Fig. 5.9. We can now write the following expression for 
the recorded samples p,, of an ideal projection p(x): 

~~=W---ZT,)b(x)*dx)l (22) 

or, equivalently, 

(23) 

ALIASING ARTIFACTS AND NOISE IN CT IMAGES 187 



,a 
-6~ -4n -2?r 2n 4-n 6a 

T, T, T, f, T, T, 

A’(o) 

-?r -2n -- 
T, Td 

2r ld -- 
Td 2 

Fig. 5.9: The Fourier transform where P(w) is the Fourier transform of the projection data and IFT is the 
of the detector array response is 
shown for three different detector 

inverse Fourier transform. Clearly, there will be aliasing in the sampled 
soacinns. For values of T, such projections unless 
that Ti > TJ2 there hi be 
aliasing. If T, 5 Td/2, then 
a&sing is minimized. Ts<;. (24) 

This relationship implies that we should have at least two samples per 
detector width [Jos8Oa]. 

There are several ways to measure multiple samples per detector width. 
With first-generation (parallel beam) scanners, it is simply a matter of 
sampling the detectors more often as the source-detector combination moves 
past the object. Increasing the sampling density can also be done in fourth- 
generation (fixed-detector) scanners by considering each detector as the apex 
of a fan. Now as the source rotates, each detector measures ray integrals and 
the ray density can be made arbitrarily dense by increasing the sampling rate 
for each detector. 

For third-generation scanners a technique known as quarter detector offset 
is used. Recall that for a fan beam scanner only data for 180” plus the width 
of the fan need be collected; if a full 360” of data is collected then the rest of 
the data is effectively redundant. But if the detector array is offset by l/4 of 
the detector spacing (ordinarily, the detector bank is symmetric with respect 
to the line joining the x-ray source and the center of rotation; by offset is 
meant translating the detector bank to the left or right, thereby causing rays in 
opposite views to be unique) and a full 360” of data is collected it is possible 
to use the extra views to obtain unique information about the object. This 
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effectively doubles the projection sampling frequency. Fig. 5.10 compares 
the effect of quarter detector offset on a first-generation and a third- 
generation scanner. 

We will now discuss the second factor that causes projections to become 
blurred, namely, the size of the x-ray beam. As we will show, we can’t 
account for the extent of blurring caused by this effect in as elegant a manner 
as we did for the detector aperture. The primary source of difficulty is that 
objects undergo different amounts of blurring depending upon how far away 
they are from the source of x-rays. Fig. 5.11 shows the effect of a source of 
nonzero width. As is evident from the figure, the effect on a projection is 
dependent upon where the object is located between the source and the 
detectors. 

Simple geometrical arguments show that for a given point in the object, the 
size of its image at the detector array is given by 

B,=+ 
s 

(25) 

where w, is the width of the source and Dd and D, are, respectively, the 
distances from the point in the object to the detectors and the source. This 
then would roughly be a measure of blurring introduced by a nonzero-width 
source in a parallel beam machine. 

In a fan beam system, the above-mentioned blurring is exacerbated by the 
natural divergence of the fan. To illustrate our point, consider two detector 
lines for a fan beam system, as shown in Fig. 5.12. The projection data 
measured along the two lines would be identical except for stretching of the 
projection function along the detector arc as we go to the array farther away 
from the center. This stretch factor is given by (see Fig. 5.13) 

W-9 

where the distances Ds and Dd are for object points at the center of the scan. If 
we combine the preceding two equations, we obtain for a fan beam system the 
blurring caused by a nonzero-width source 

B,,w,~~ DS Dd 
DsD,+Dd=ws Ds+Dd 

(27) 

with the understanding that, rigorously speaking, this equation is only valid 
for object points close to the center of rotation. 

Since the size of the image is dependent on the position along the ray 
integral this leads to a spatially varying blurring of the projection data. Near 
the detector the blurring will be small while near the source a point in the 
object could be magnified by a large amount. Since the system is linear each 
point in the object will be convolved with a scaled image of the source point 
and then projected onto the detector line. 

ALIASING ARTIFACTS AND NOISE IN CT IMAGES 189 



5.2 Noise in Reconstructed Images 

Fig. 5.10: The ray paths for 
normal and quarter offset 
detectors are compared here, 
Each ray path is represented by 
plotting an asterisk at the point 
on the ray closest to the origin. 
In each case 6 projections of 10 
rays each were gathered by 
rotating a full 360’ around the 
object. (Note: normally only 180” 
of projection data is used 
for parallel projection 
reconstruction.) (a) shows parallel 
projections without quarter offset 
(note that the extra 180” of data 
is redundant). (b) is identical to 
(a) but the detector array has 
been shifted by a quarter of the 
sampling interval. (c) shows 
equiangular projections without 
quarter offset and (d) is identical 
to (c) but the detector array has 
been shifted by a Quarter of the 
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We will now consider the effect of noise in the projection data on a 
reconstructed image. There are two types of noise to be considered. The first, 
a continuously varying error due to electrical noise or roundoff errors, can be 
modeled as a simple additive noise. The reconstructed image can therefore be 
considered to be the sum of two images, the true image and that image 
resulting from the noise. The second type of noise is best exemplified by shot 
noise in x-ray tomography. In this case the magnitude of the possible error is 
a function of the number of x-ray photons that exit the object and the error 
analysis becomes more involved. 

5.2.1 The Continuous Case 

Consider the case where each projection, PO(t), is corrupted by additive 
noise zq(t). The measured projections, Pr(t), are now given by 

Pf(t)=P&)+Y&). (28) 

We will assume that the noise is a stationary zero-mean random process and 
that its values are uncorrelated for any two rays in the system. Therefore, 

aK9,(~lk92(~2)1 =so WI - e,)wf, - t21. (29) 

The reconstruction from the measured projection data is obtained by first 

Parallel LO- 
Offset~Parallel 

x * 
* .?5- . * 

x ” 
n ” I 

.50- 1 II 
I II 

* * 

. x 
I ” 1 m * * * s * 

* * 

* * 

I Li 

* * 

I * 

-.25 
1 . 

* * 
I . 

-.50 * I 
* ” 

. . 
* 

* 
” 

. 

-1.0 1 -1.0 -75 -.50 -25 0.0 .25 .50 75 I.0 4.0 -75 -.50 -25 0.0 .25 210 75 I.0 

(a) (4 

190 COMPUTERIZED TOMOGRAPHIC IMAGING 



I.0 

35 

.50 

.25 

0.0 

-.25 

-50 

-.75 

-1.0 I.6 

.25 

” ’ 

- * 0.0 

-.25 

” 

I * 
I . 

I w 
x II 

* I 

s 

- 0.0 .25 30 .75 ID -1.0 
-1.0 -35 -50 -25 0.0 .25 .50 75 ID 

-JO 

-.75 

-75 -56 -.ti 

Fig. 5.10: Continued. 

Fig, 5.11: A finite source of 
width w, will be  imaged by each 
point in the object onto the 
detector line. The size of the 
image will depend on  the ratio of 
D, to Dd. The images of two 
points in the object are shown 
here. 
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(4 

filtering each projection: 

(d) 

Q;;l<t>= I:, Sr(w)(w(G(w)eJZrw* dw (30) 

where S:(w) is the Fourier transform of P:(t) and G(w) is the smoothing 
filter used; and then backprojecting the filtered projections: 

f<x, u) = s: Qr(x cos 6+y sin 0) dt3 (31) 

where !(x, y) is the reconstructed approximation to the original image f(x, 
y). For the purpose of noise calculations, we substitute (28) and (30) in (31) 
and write 

f(x, y)= 1, iy, [Se(w)+&(w)]1 wJG(w)eJ2~W(XcaSe+~Sine) dw dtl 

(32) 

I+-V+----- Dd m 
Detector Line 
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Fig. 5.12: The magnification of 
a projection due to a fan beam 
system is shown here. To find the 
effect of the source or detector 
aperture on image resolution it is 
necessary to map the blurring of 
the projection into an equivalent 
object size. 

Fig. 5.13: A finite detector 
aperture leads to a blurring of the 
object. 

Detector Line ~3 I 

where, as before, S,(w) is the Fourier transform of the ideal projection PO(~), 
and N@(w) is the Fourier transform of the additive noise, I. (Here we 
assume IVo( w) exists in some sense. Note that in spite of our notation we are 
only dealing with projections with finite support.) Clearly, 

N(w)= jy, ye (t)e-arwr dt (33) 

from which we can write 

=s, 6(wl--w#i(e,-e*) (35) 

where we have used (29). 
Since No(w) is random, the reconstructed image given by (32) is also 

random. The mean value of f^(x, JJ) is given by 

ELf(x, UN= j; j;, [Mw) 

+E(&(w))]( w~G(w)eJ2~W(XCoSe+YSine) dw de. (36) 

Since we are dealing with zero-mean noise, E[ve(t)] = 0; hence, from (33) 

Point 
Source 

- I $5 
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we get E[iVe(w)] = 0. Substituting this in (36), we get 

E[~(x, JJ)] = j: SW Se(w)1 WI G(w)e~2~w(xcose+Ysine) dw de. (37) 
-m 

Now the variance of noise at a point (x, y) in the reconstructed image is given 
by 

u;~&, ~)=E[.f(x, ~+-E(.f(x, rNl*. (38) 

Substituting (32) and (37), we get 

u&,,~(x, y)=E 1: Srn N~(W)~WJG(w)eJ2”W(XCoSe+YSi”e) dw dtJ * (39) 
-ca 

=E j: I;, Ne(w)I w 

X N(w)1 w 

IG(w)~j2~w(x~0~e+~~ine) dw de 

I 

1 G ( w) ePw(x ~0s e+Y sin 8) dw de 1 * (40) 

= 7rSo s ;, I wl*l G(w)l* dw (41) 

where we have used (35). Therefore, we may write 

2 
~recon 
----CT 

so s 
;, I~I*IG(~)I* dw (42) 

where we have dropped the (x, y) dependence of (T&,, since it has turned out 
to be independent of position in the picture plane. 

Equation (42) says that in order to reduce the variance of noise in a 
reconstructed image, the filter function G(w) must be chosen such that the 
area under the square of I w( G( w) is as small as possible. But note that if 
there is to be no image distortion I WI G(w) must be as close to (WI as 
possible. Therefore, the choice of G(w) depends upon the desired trade-off 
between image distortion and noise variance. 

We will conclude this subsection by presenting a brief description of the 
spectral density of noise in a reconstructed image. To keep our presentation 
simple we will assume that the projections consist only of zero-mean white 
noise, ve(t). The reconstructed image from the noise projections is given by 

f(x, Y)= j: Srn No(W)1 ~~~~~~~~~~~~~~~~~~~~~~~~ dw dt’ (43) --o) 

2% cm 
= 

s s 
~~(~1 w~(W)ejZ7w(xcos B+Y sin 0) dw de (44) 0 0 
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where, as before, No(W) is the Fourier transform of t+(t). NOW let R(a, p) be 
the autocorrelation function of the reconstructed image: 

R(cY, P)=E[f(x+a, u+P)k u)l=E[f^(x+c~ v+P)fW, 1’11 (45) 

=s, If de 1: dwW*Ig(W)I*eJ2*W(olcose+psine). (46) 

From this one can show that the spectral density of the reconstructed noise is 
dependent only on the distance from the origin in the frequency domain and is 
given by 

UW @=&lGWl*~ and :$,, (47) 

where, of course, w is always positive. This may be shown by first 
expressing the result for the autocorrelation function in polar coordinates 

R(r, q5)=So 1: d0 1: dww21G(w)~2e’2rwrcos(e-~) (48) 

=so 1; wlG(w)12wJo(2awr) dw (49) 

and recognizing the Hankel transform relationship between the autocorrela- 
tion function and the spectral density given above. 

5.2.2 The Discrete Case 

Although the continuous case does bring out the dependence of the noise 
variance in the reconstructed image on the filter used for the projection data, 
it is based on a somewhat unrealistic assumption. The assumption of 
stationarity which led to (29) implies that in any projection the variance of 
measurement noise for each ray is the same. This is almost never true in 
practice. The variance of noise is often signal dependent and this has an 
important bearing on the structure of noise in the reconstructed image. 

As an illustration of the case of signal-dependent noise consider the case of 
x-ray computerized tomography. Let r be the sampling interval and also the 
width of the x-ray beam, as illustrated in Fig. 5.14. If the width r of the beam 
is small enough and the beam is monochromatic the integral of the attenuation 
function ~(x, JJ) along line AB in Fig. 5.14 is given by 

Pe(t)= S P(X, u) ds=ln Ni,-ln Ne(kr) (50) 
ray path AB 

where Ne(kr) denotes the value of Nd for the ray at location (0, kr) as shown 
in the figure. Randomness in the measurement of PO(t) is introduced by 
statistical fluctuations in Ne(kr). Note that in practice only Ne(kr) is 

194 COMPUTERIZED TOMOGRAPHIC IMAGING 



I N 
PB&d - p(x, y) ds = fan $ 

ray path AB 
d 

B 
\ 

\ 
A 

Fig. 5.14: An x-ray beam with a 
width of z is shown traveling 

measured directly. The value of Ni” for all rays is inferred by monitoring the 

through a cross section of the x-ray source with a reference detector and from the knowledge of the spatial 
human body. (From rKak791.1 distribution of emitted x-rays. It is usually safe to assume that the reference x- 

ray flux is large enough so that Nin may be considered to be known with 
negligible error. In the rest of the discussion here we will assume that for each 
ray integral measurement Nin is a known deterministic constant, while on the 
other hand the directly measured quantity Ne(kr) is a random variable. The 
randomness of Ne(kr) is statistically described by the Poisson probability 
function [Ter67], [Pap651 : 

(51) 

where p{ *} denotes the probability and Ne(kr) the expected value of the 
measurement: 

Ne(h)=E{ Ne(h)} (52) 

where E{ } denotes statistical expectation. Note that the variance of each 
measurement is given by 

variance { Ne(k7)) =&Je(kr). (53) 
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Because of the randomness in Ne(kr) the true value of Pe(k7) will differ 
from its measured value which will be denoted by Pr(k7). To bring out this 
distinction we reexpress (50) as follows: 

and 

Pf(kr)=ln Ni,-In Ne(kr) (54) 

Pe(W= S AX, U) ds. (55) 
‘aY 

By interpreting e- pe(kT) as the probability that (along a ray such as the one 
shown in Chapter 4) a photon entering the object from side A will emerge 
(without scattering or absorption) at side B, one can show that 

Ne(k7) = Nine-pe(kr). (56) 

We will now assume that all fluctuations (departures from the mean) in 
Ne(kr) that have a significant probability of occurrence are much less than 
the mean. With this assumption and using (50) and (5 1) it is easily shown that 

E{P,“(k~)}=Pg(k7) (57) 

and 

1 
variance { Pr (k7)) = 7 . 

Ne(k7) 

From the statistical properties of the measured projections, Pr(k7), we 
will now derive those of the reconstructed image. Using the discrete filtered 
backprojection algorithms of Chapter 3, the relationship between the 
reconstruction at a point (x, y) and the measured projections is given by 

f(x, u) =- l, M$ c Pz(kT)h(x cos 0i+y sin 8i-kT). (59) 
ProJ r=l k 

Using (57), (58), and (59), we get 

E{f(x, y)} =c M$ C Pe,(kT)h(x cos 8i+y sin Bi-k7) (60) 
ProJ r=l k 

and 

variance (f^(x, r)} = 

1 
- h*(x cos 8i+y sin Bi- k7) 
N+(k7) 

(61) 
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where we have used the assumption that fluctuations in PC&r) are 
uncorrelated for different rays. Equation (60) shows that the expected value 
of the reconstructed image is equal to that made from the ideal projection 
data. Before we interpret (61) we will rewrite it as follows. In terms of the 
ideal projections, P&r), we define new projections as 

Ve(k7)=ePfJ(kr) 

and a new filter function, h,(t), as 

(62) 

h”(t)=h*(t). (63) 

Substituting (56), (62), and (63) in (61), we get 

variance {p(x, y)} = 

* h,(x cos Bi + y sin Bi - kr). (64) 

We will now define a relative-uncertainty image as follows *: 

relative-uncertainty at (X, y ) = ZVi” 
variance {f^(x, y)} 

Lox9 Y)12 * 

(65) 

In computer simulation studies with this definition the relative-uncertainty 
image becomes independent of the number of incident photons used for 
measurements, and is completely determined by the choice of the phantom. 
Fig. 5.15(c) shows the relative-uncertainty image for the Shepp and Logan 
phantom (Fig. 5.15(b)) for Mproj = 120 and T = 21101 and for h(t) 
originally described in Chapter 3. Fig. 5.15(d) shows graphically the middle 
horizontal line through Fig. 5.15(c). The relative-uncertainty at (x, y) gives 
us a measure of how much confidence an observer might place in the 
reconstructed value at the point (x, y) vis-a-vis those elsewhere. 

We will now derive some special cases of (64). Suppose we want to 
determine the variance of noise at the origin. From (64) we can write 

variance {f^(O, 0)} = (66) 

where we have used the fact that h(t) is an even function. Chesler et al. 
[Che77] have argued that since h(kr) drops rapidly with k (see Chapter 3), it 
is safe to make the following approximation for objects that are approxi- 

I This result only applies when compensators aren’t used to reduce the dynamic range of the 
detector output signal. In noise analyses their effect can be approximately modeled by using 
different Ni.‘s for different rays. 
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Fig. 5.15: (a) A Shepp and  mately homogeneous: 
Logan head phantom [She741 is 
shown here. (b) A reconstruction 
of the phantom from 120 
projections and  101  rays in each variance {f(O, 0)) = (67) 
parallel projection. The display 
matrix was 64  x 64. (c) The 
relative-uncertainty image for the 
reconstruction in (b). (d) A which, when r is small enough, may also be written as 
graphic depiction of the - _ 
relative-&certainty values 
through the middle horizontal 
line of(c). (From [Kak79/.) variance {f(O, O)} = (~)*7j~~n

’

w~&. 

(68) 
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Note again that the &i(O) are the mean number of exiting photons measured 
for the center ray in each projection. Using (68) Chesler et al. [Che77] have 
arrived at the very interesting result that (for the same uncertainty in 
measurement) the total number of photons per resolution element required for 
x-ray CT (using the filtered backprojection algorithm) is the same as that 
required for the measurement of attenuation of an isolated (excised) piece of 
the object with dimensions equal to those of the resolution element. 

Now consider the case where the cross section for which the CT image is 
being reconstructed is circularly symmetric. The Noi(O for all i’s will be 
equal; call their common value &. That is, let 

- - 
No=Nei(0)=Ne2(O)= m-e. 

The expression (68) for the variance may now be written as 

(69) 

variance {f^(O, 0)} = & 1: h*(t) dt. 
,XOJ 0 O1 

By Parseval’s theorem this result may be expressed in the frequency domain 
as 

variance {p(O, 0)) =A {“2r 
A4projivo -I/Z7 ‘N(W)‘2 dw (71) 

where r is the sampling interval for the projection data. This result says that 
the variance of noise at the origin is proportional to the area under the square 
of the filter function used for reconstruction. This doesn’t imply that this area 
could be made arbitrarily small since any major departure from the ( w ( 
function will introduce spatial distortion in the image even though it may be 
less noisy. None of the equations above should be construed to imply that 
the signal-to-noise ratio approaches zero as r is made arbitrarily small. 
Note from Chapter 4 that r is also the width of the measurement beam. In any 
practical system, as r is reduced biro will decrease also. 

The preceding discussion has resulted in expressions for the variance of 
noise in reconstructions made with a filtered backprojection algorithm for 
parallel projection data. As mentioned before, filtered backprojection 
algorithms have become very popular because of their accuracy. Still, given a 
set of projections, can there be an algorithm that might reconstruct an image 
with a smaller error? The answer to this question has been supplied by Tretiak 
[Tre78]. Tretiak has derived an algorithm-independent lower bound for the 
mean squared error in a reconstructed image and has argued that for the case 
of reconstructions from parallel projection data this lower bound is very close 
to the error estimates obtained by Brooks and DiChiro [Bro76] for the filtered 
backprojection algorithms, which leads to the conclusion that very little 
improvement can be obtained over the performance of such an algorithm. 
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5.3 Bibliographic Notes 

Aliasing artifacts in tomographic imaging with nondiffracting sources have 
been studied by Brooks et al. [Bro78], [Bro79] and Crawford and Kak 
[Cra79]. A different analysis of the optimum number of rays and projections 
was presented in [Sch77] and reached nearly the same conclusion. A more 
detailed analysis is in [JosSO]. Excellent work describing the effects of 
sampling on CT images has been published in [Jos80], [Jos8Ob], [Bro79]. 

With regard to the properties of noise in images reconstructed with filtered 
backprojection, Shepp and Logan [She741 first showed that when filtered 
backprojection algorithms are used, the variance of the noise is directly 
proportional to the area under the square of the filter function. This derivation 
was based on the assumption that the variance of the measurement noise is the 
same for all the rays in the projection data, a condition which is usually not 
satisfied. The variance of the reconstruction was also studied by Gore and 
Tofts [Gor78]. This assumption was also used by Riederer et al. [Rie78] to 
derive the spectral density of the noise in a CT reconstruction. 

A more general expression (not using this assumption) for the noise 
variance was derived by Kak [Kak79] who has also introduced the concept of 
“the relative-uncertainty image.” For tomographic imaging with x-rays, 
Tretiak [Tre78] has derived an algorithm-independent lower bound on the 
noise variance in a reconstructed image. An explanation of the trade-offs 
between reconstruction noise in x-ray CT and image resolution is given in 
[Che77], [Alv79], [Kow77]. 
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