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Reflection Tomography 

8.1 Introduction 

The tomographic images up to this point have generally been formed by 
illuminating an object with some form of energy (x-rays, microwaves, or 
ultrasound) and measuring the energy that passes through the object to the 
other side. In the case of straight ray propagation, the measurement can be of 
either the amplitude or the time of arrival of the received signal; an estimate is 
then formed of a line integral of the object’s attenuation coefficient or 
refractive index. Even when the energy doesn’t travel in a straight line it is 
often possible to use either algebraic techniques or diffraction tomography to 
form an image. 

Transmission tomography is sometimes not possible because of physical 
constraints. For example, when ultrasound is used for cardiovascular 
imaging, the transmitted signal is almost immeasurable because of large 
impedance discontinuities at tissue-bone and air-tissue interfaces and other 
attenuation losses. For this reason most medical ultrasonic imaging is done 
using reflected signals. In the most straightforward approach to reflection 
imaging with ultrasound, the echoes are recorded as in radar; in medical areas 
this approach goes by the name of B-scan imaging. 

The basic aim of reflection tomography is to construct a quantitative cross- 
sectional image from reflection data. One nice aspect of this form of imaging, 
especially in comparison with transmission tomography, is that it is not 
necessary to encircle the object with transmitters and receivers for gathering 
the “projection” data; transmission and reception are now done from the 
same side. The same is of course true of B-scan imaging where a small beam 
of ultrasonic energy illuminates the object and an image is formed by 
displaying the reflected signal as a function of time and direction of the beam. 

While in transmission tomography it is possible to use both narrow band 
and broadband signals, in reflection tomography only the latter type is 
acceptable. As will become evident by the discussion in this chapter, with 
short pulses (broadband signals) it is possible to form line integrals of some 
object parameter over lines of constant propagation delays. 

Since researchers in reflection tomography are frequently asked to 
compare B-scan imaging with reflection tomography, in this chapter we will 
first give a very brief introduction to B-scan imaging, taking great liberties 
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with conceptual detail; for a rigorous treatment of the subject, the reader is 
referred to [Fat80]. We will then illustrate how reflection tomography can be 
carried out with plane wave transducers and some of the fundamental 
limitations of this type of imaging. Our discussion of reflection tomography 
with plane wave transducers will include a demonstration of the relationship 
that exists between reflection tomography and the diffraction tomography 
formalism presented in Chapter 6. Finally, we will describe how reflection 
tomographic imaging can be carried out with point transducers producing 
spherical waves. 

8.2 B-Scan Imaging 

To explain B-scan imaging, assume that the object inhomogeneities can be 
modeled by an isotropic scattering functionf(x, y), a function of position. In 
the rest of this chapter, f(x, y) will be referred to as the object reflectivity 
function. Within certain restrictions, it is a measure of the portion of the local 
transmitted field that is reflected back toward the receiver. Note that we are 
taking liberties with rigorous theory, since the scattering process is also a 
function of the direction of the illumination and the direction in which the 
reflection is measured. For a more precise analysis the reader is referred to 
[Fat80]. 

As shown in Fig. 8.1, a B-scan is a simple example of radar imaging. For 
illustration, we will assume that within the object the beam is confined to a 
narrow region along a line as shown in Fig. 8.1(a) and that the amplitude of 
the field along this line isn’t decaying so that it can be written as a function of 
only one variable, the distance along the line. If the illuminating wave has a 
very short time duration, there will be a direct mapping between the time at 
which a portion of the reflected wave is received and the distance into the 
object. 

Mathematically, the received waveform is a convolution of the input 
waveform, p,(t), and the object’s reflectivity. The incident field can be 
written as 

4$(x, Y)=Pt t-z ( > for y=O 

and 

rc’i(X, Y I= O elsewhere 

where c is the propagation speed of the wave. This function models a pulse, 
p,(t), propagating down the x-axis, assumed perpendicular to the face of the 
transducer, with speed c. This is pictorially illustrated in Fig. 8.1(b). At a 
point (x, y) in the object a portion of the incident field, $i(X, y), will be 
scattered back toward the transducer. Therefore the amplitude of the scattered 
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Fig. 8.1: In B-scan imaging an 
object is illuminated by a narrow 
beam of energy. A short 
(temporal) pulse is transmitted 
and will propagate through the 
object. (a) shows a portion of the 
object illuminated by a ‘pencil” 
beam of energy, (b) shows the 
pulse at different times within the 
object, and (c) shows the 
spherically expanding wave 
caused by a single scatterer within 
the object. 
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field at the scatterer is given approximately by 

$(x, y=O) = f(x, y=O)p, t-E . 
( > 

In traveling back to the receiver, the reflected pulse will be delayed by x/c 
due to the propagation distance involved and attenuated because the reflected 
field is diverging as depicted in Fig. 8.1(c). To maintain conservation of 
energy (in two dimensions here) the amplitude attenuation due to spreading is 
proportional to l/h. That means the energy density will decay as l/x and, 
when integrated over the boundary of a circle enclosing the scattering site, the 
total energy outflow will always be the same regardless of the radius of the 
circle. Thus the field received due to reflection at x is given by 

!h I scattered at x = pt t-t-: f(x,y=O) i. 
( > 6 

Integrating this with respect to all the reflecting sites along the transmitter 
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line, the total field at the receiver is given by 

t+&(t)= s p,(t-2 z) f(x;/:=o) dx. (5) 

With the above expression for the scattered field due to a narrow incident 
beam it is relatively straightforward to find a reconstruction process for the 
object’s reflectivity. Certainly the simplest approach is to illuminate the 
object with a pulse, p,(t), that looks like an impulse. The scattered field can 
then be approximated by 

&(t) = s (t-2 :) f(x;_:=“) dx=$,( 5, y=O) . (6) 

This expression shows that there is a direct relation between the scattered 
field at t and the object’s reflectivity at x = tc/2. This is shown in Fig. 8.2. 
With this expression it is easy to see that a reconstruction can be formed using 

(7) 

where f is the estimate of the reflectivity function f. The term 4x/c2 that 
multiplies the scattered field is known as time gain compensation and it 
compensates for the spreading of the fields after they are scattered by the 
object. 

In B-scan imaging, a cross-sectional image of the object’s reflectivity 
variation is mapped out by a combination of scanning the incident beam and 
measuring the reflected field over a period of time. Recall that in B-scan 
imaging the object is illuminated by a very narrow beam of energy. Equation 
(7) then gives an estimate of the object’s reflectivity along the line of the 
object illuminated by the field. To reconstruct the entire object it is then 
necessary to move the transducer in such a manner that all parts of the object 
are scanned. There are many ways this can be accomplished, the simplest 

Fig. 8.2: When an object is 
illuminated by a pulse there is a 
direct relationship between the 
backscattered field and the 
object’s reflectivity along a line. 

A Reflected 
field measured 
at transducer 
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being to spin the transducer and let each position of the transducer illuminate 
one line of a fan. This is the type of scan shown in Fig. 8.3. 

Clearly, the resolution in a B-scan image is a function of two parameters: 
the duration of the incident pulse and the width of the beam. Resolution as 
determined by the duration of the pulse is often called the range resolution 
and the resolution controlled by the width of the beam is referred to as the 
lateral resolution. The range resolution can be found by considering the 
system response for a single point scatterer. From (5) the field measured at 
the point (0, 0) due to a single scatterer of “unit strength” at x = x0 will be 
equal to 

pt t-$ 
( > 

4uo= r * (8) 
x0 

Substituting this in (7), our expression for estimating the reflectivity, we 
obtain the following form for the image of the object’s reflectivity: 

~(x,y=o)=~~~(r,=~pt~-~’ . (9) 

From this it is easy to see that an incident pulse of width tp seconds will lead 
to an estimate that is tpc units wide. 

It is interesting to examine in the frequency domain the process by which 
the object reflectivity function may be recovered from the measured data. In 
the simple model described here, the frequency domain techniques can be 
used by merging the l/A factor with the reflectivity function; this can be 
done by defining a modified reflectivity function 

f’(x, y)=fy. (10) 
X 

Now the scattered field at the point (0, 0) can be written as the convolution 

#s(t)= i .t(t-2 :) f’k y=O) dx 

and can be expressed in the Fourier domain as 

$&.4 = P-t(4F+~, y=o) . (12) 

Given the scattered field in this form it is easy to derive a procedure to 
estimate the reflectivity of the object. Ideally it is only necessary to divide the 
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(a) 

Fig. 8.3: Often, in commercial 
B-scan imaging a focused beam 
of energy is moved past the 
object. An image is formed by 
plotting the received field as a 
function of time and transducer 
position, (a) shows this process 
schematically. (b) is a transverse 
7.5~MHz sonogram of a 
carcinoma in the upper half of 
the right breast. (This image is 
courtesy of Valerie P. Jackson, 
M.D., Associate Professor of 
Radiology, Indiana University 
School of Medicine.) (c) is a 
drawing of the tissue shown in 
(b). The mass near the center of 
the sonogram is lobulated, has 
some irregular borders and 
low-level internal echoes, and 
there is an area of posterior 
shadowing at the medial aspect of 
the tumor. These findings are 
compatible with malignancy. 
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Fourier transform of the received field by P&J) to find 

F(2;,y=O) = @& (13) 

Unfortunately, in most cases this simple implementation doesn’t work 
because there can be frequencies where P,(w) is equal to zero, which can 
cause instabilities in the division, especially if there is noise present at those 
frequencies in the measured data. A more noise insensitive implementation 
can be obtained via Wiener filtering [Fat80]. 

8.3 Reflection Tomography 

Reflection tomography is based on the measurement of line integrals of the 
object reflectivity function. Consider a single point transducer illuminating an 
object with a very wide fan-shaped beam. If the incident field is just an 
impulse in the time domain, then the received signal at time t represents the 
total of all reflections at a distance of tc from the transducer. The locus of all 
points at the same distance from the transmitter/receiver is a circle; thus this 
mode of reflection tomography measures line integrals over circular arcs. 
(See Fig. 8.4.) Then by moving the transducer over a plane, or alternatively 
on a sphere wrapped around the object, it is possible to collect enough line 
integrals to reconstruct the entire object. This approach to tomographic 
imaging was described first by Norton and Linzer [Nor79a], [Nor79b]. 

In principle, reconstruction from such data is similar to the following case 
that is easier to describe: Instead of using a point transducer, we will use a 
plane wave transducer. As we will show below, for the two-dimensional case 
the lines of equal propagation delay now become straight lines through the 
object and thus the reconstruction algorithms are exactly like those for 
conventional parallel beam tomography. First, though, we will describe the 
field generated and received by a plane transducer. 

8.3.1 Plane Wave Reflection Transducers 

Before deriving a reconstruction procedure using plane waves we first must 
define what a plane wave transducer measures. In the transmit mode, the field 
produced by an ideal plane wave transducer when excited by the waveform 
p,(t) is equal to 

$i(Xv Y9 t) = Pt tMX 
( > c ’ 

x>o 

where we have assumed that the transducer is flush with the plane x = 0. 
Note that the field is only defined in the positive x half space and is a function 
of one spatial variable. 

In the receive mode the situation is slightly more complicated. If $,(x, y, t) 
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Fig. 8.4: If a transducer with a is the scattered field, the signal generated at the electrical terminals of the 
wide beam illuminates the object, 
then it will measure line integrals 

transducer is proportional to the integral of this field. We will ignore the 
over circular arcs of the object’s constant of proportionality and write the electrical received signal, p,(t), as 
reflectivity. 

p,(t)= s $40, Y, 0 du. (15) 

In order to derive an expression for the received waveform given the field 
at points distant from the transducer it is necessary to consider how the waves 
propagate back to the transducer. First assume that there is a line of reflectors 
at x = x0 that reflect a portion, f(x = x0, y), of the field. As described above 
we can write the scattered field at the line x = x0 as the product of the 
incident field and the reflectivity parameter or 

$,Y(X=XO, y, t) = $i(X=XOy Y, t)f(X=XO, y) 

= pt t-z f(x=xo, y). 
( > 

To find the field at the transducer face it is necessary to find the Fourier 
transform of the field and then propagate each plane wave to the transducer 
face. This is done by first finding the spatial and temporal Fourier transform 
of the field at the line of reflectors 

&(k,, w) = iy, I”, $z(x=xo, y, t)e-jkyJ’ejwt dy dt. (17) 

The function $#,, w) therefore represents the amplitude of the plane wave 
propagating with direction vectors ( - d(l(~/c)~ - k;, k,). It is important to 
realize that the above equation represents the field along the line as a function 
of two variables. For any temporal frequency, o, there is an entire spectrum 
of plane waves, each with a unique propagation direction. 

Recall that we are using the convention for the Fourier transform defined in 
Chapter 6. Thus the forward transform has a phase factor of e -jkyY in the 
spatial domain, as is conventional, while the temporal Fourier transform uses 
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e+jwt for the forward transform. The signs are reversed for the inverse 
transform. 

With this plane wave expansion for the field it is now easy to propagate 
each plane wave to the transducer face. Consider an arbitrary plane wave 

$(x, y)=ej(Q+kyy) (18) 

where k, will be negative indicating a wave traveling back toward the 
transducer. Using (15), the electrical signal produced is quickly seen to be 
equal to zero for all plane waves when k,, # 0. This is due to the fact that 

s m ejkyy dy=b(k,). (1% --m 

Those plane waves traveling perpendicular to the face of the transducer (k, 
= 0) will experience a delay due to the propagation distance x0. In the 
frequency domain this represents a factor of e ja(Xo’c). The electrical response 
due to a unit amplitude plane wave is then seen to be 

P,(w, k,) = G(ky)ej~Wc). (20) 

By summing each of the plane waves at frequency w in (17), the total 
electrical response due to the scattered fields from the plane x = x0 is given 
by 

PJw)= IJ~(/c,=O, 0)ej~WC) (21) 

or back in the time domain it is simply equal to 

m(t) =& Srn &(k, = 0, o)ej”Wc)e-juf du. 
-cc (22) 

Now substituting (14), (17), and (16) into this expression, the received signal 
can be written 

. eb(+/c)e-ikyy&t’ dy dt’ IkyEO (23) 

which is the same as 

LG(f)=& ST, e-jot du i”, [y, &(x=x0, y, t’) 

- f(x=xo, y)ejw(xo/c)ejwr’ dy dt’ (24) 
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which reduces to 

- f(x=xo, y)ej”(xo/c)ejut’ dy dt’. (25) 

Interchanging the order of integrations yields 

s;,f(x=xo, y) dy. (26) 

The above equation represents the measured signal due to a single line of 
scatterers at x = x0. Let the total (integrated) reflectivity of the object along 
the line x = x0 be denoted byfi(xo). The received signal for all parts of the 
object can be written as the sum of each individual line (since we are 
assuming that the backscattered fields satisfy the Born approximation and 
thus the system is linear) and the total measured signal can be written 

At) = ~;/+2~)fi(xl dx. (27) 

This signal is similar to that of B-scan imaging. Like B-scan the transmitted 
pulse is convolved with the reflectivity of the object but in each case the 
reflectivity is summed over the portion of the object illuminated by the 
incident field. In B-scan the object is illuminated by a narrow beam so each 
portion of the received signal represents a small area of the object. With 
reflection tomography the beam is very wide and thus each measurement 
corresponds to a line integral through the object. 

Like B-scan imaging the reflectivity of the object can be found by first 
deconvolving the effects of the incident pulse. If the incident pulse can be 
approximated by an impulse, then the object’s reflectivity over line integrals 
is equal to 

X 
fl(X)=Pr 2- ; ( > c 

(28) 

otherwise a deconvolution must be done and the line integrals recovered using 

(29) 

where F,(w), P,(w), and Pt(w) represent the Fourier transform of the 
corresponding time or space domain signal. (In practice, of course, one may 
have to resort to techniques such as Wiener filtering for implementing the 
frequency domain inversion.) 
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Fig. 8.5: By using a common 
signal source and combining all 
the electrical signals, an array of 
transducers can be used to 
generate a plane wave for 
reflection tomography. However, 
by recording the information 
separately for each transducer, 
they can also be used for the 
more general form of reflection 
tomography. 

The line integral data in the equation above are precisely the information 
needed to perform a reconstruction using the Fourier Slice Theorem. As 
described in Chapter 3, the object’s reflectivity can be found using the 
relationship 

f(x, y)= 1: jm Se(u)lwlej~t du de (30) --P) 

where SO represents the Fourier transform of the projection data measured 
with the transducer face at an angle of 0 to the horizontal and 

t=x cos B+y sin 8. (31) 

8.3.2 Reflection Tomography vs. Diffraction Tomography 

It is interesting to compare reflection tomography as just described using 
plane wave transducers to the methods of diffraction tomography presented in 
Chapter 6. To see the similarities, consider the following imaging experi- 
ment. Instead of using a plane wave transducer, let’s use a line array to 
illuminate the object, as shown in Fig. 8.5. 

To perform a reflection tomography experiment of the type described in 
the preceding subsection, we need to be able to generate a plane wave with 
the array; this can be done easily by applying the same broadband signal p(t) 
to every transducer in the array. For reception, if we simply add the electrical 
signals generated by the transducer elements in the array, we will obtain a 
close approximation to the receiving characteristics of a plane wave 
transducer. 

Now imagine that instead of summing all the received electrical signals, we 
record each one separately-call each such signal s(t, y). If we take the 
Fourier transform of each received waveform s(t, y) with respect to time, we 
obtain 

S(W, y)= ST, s(t, y)ejut dt. (32) 

Array of Transducers 
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If the original signal has a spectrum given by 

Fig. 8.6: The Fourier transform 
of the field received by a plane 
wave transducer gives samples of 
the two-dimensional Fourier 
transform of the object along the 
line indicated by the cross marks. 
For each spatial frequency, kO, 
the backscattered field gives 
information along an arc. A 
plane wave transducer only 
measures the dc component; thus 
the measured signal contains 
information about only one point 
of each arc. By rotating the 
transducer around the object a 
complete reconstruction can be 
formed. 

pt(o)= SW pt(t)ejot dt, 
-co (33) 

then the scattered fields can be normalized by dividing the received spectrum 
by the transmitted spectrum to find 

(34) 

Again, as described before, this represents an idealized approach and in 
practice a more robust filter must be used. 

Because of the normalization at the array element at location y, the data 
S’(w, y) represent a single plane wave component of the scattered field that is 
at a temporal frequency of w. If we take a Fourier transform of S’(o, y) with 
respect to the variable y, by using the techniques of Chapter 6 we can derive 
the following relationship: 

S’(w, ky)= sa S’(w, y)e- 
--co 

jkyYdy=F(-w-k,,, k,) (35) 

which shows that the Fourier transform* S’(w, k,) provides us with an 
estimate of the Fourier transform of the object reflectivity function along a 
circular arc, as illustrated in Fig. 8.6 for a number of different frequencies. 

This means that a cross-sectional image of the object could be recon- 
structed by rotating the object in front of the array, since via such a rotation 
we should be able to fill out a “disk with a hole in the center” shaped region 
in the frequency domain. The reconstruction can be carried out by taking an 
inverse Fourier transform of this region. Clearly, since the center part of the 
disk would be missing, the reconstructed image would be a “high pass” 
version of the actual reflectivity distribution. 

Reflection tomography using plane wave transducers, as described in the 
preceding subsection, is a special case of the more general form presented 
here. This can be shown as follows: If the signals s(t, y) received by the 
transducers are simply summed over y, the resulting signal as a function of 
time represents not only the output from an idealized plane wave receiver but 
also the Fourier transform of the received field at a spatial frequency of ky = 
0. We can, for example, show that the Fourier transform of the summed 
signal 

’ Note that the expression defined in (32) represents the received signal, S, as a function of 
temporal frequency, o, and spatial position, y, while (35) represents the normalized signal as a 
function of both spatial (k,) and temporal (w) frequency. 
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is given by 

02 m 
s s s(t, y) dy ejwt dt=P,(w)[F(-w-ko, ky)lky=O (37) -co --m 

=P,(w)F(-2kJ, 0) (38) 

=P,(o)F 
( > 

-2 ” ) 0 
c 

which shows that the Fourier transform of the summed signal gives the 
Fourier transform of the object along the straight lines as given by 

for O<o<m. 

These data points are shown as crosses in Fig. 8.6. 

8.3.3 Reflection Tomography Limits 

Limitations of reflection tomography are similar to those of transmission 
tomography described in Chapter 6. In both cases the interactions of the field 
and the object are modeled using first-order approximations. 

Barry Roberts.at Purdue University performed a number of simulations to 
study the limitations of plane wave reflection tomography. The simulations 
were done to model an ideal plane wave tomography experiment using a large 
bandwidth and a very large transducer. 

The data used to study the quality of the reflection tomographic algorithms 
were calculated by assuming that the incident field is the sum of a number of 
discrete frequencies between K oL and Ken. For each frequency, a unit 
amplitude plane wave was scattered off a cylinder with a constant refractive 
index. The backscattered field was then integrated over the receiver line to 
find S(w, ky = 0). 

Fig. 8.7 shows the reflection tomographic reconstructions using an ideal 
transducer with infinite frequency response. Even in this case it is not 
possible to measure the object’s response for a wave at ko = 0 (temporal 
frequency is zero). Thus the value for the k. = 0 term was interpolated and 
there was some shift in the dc value of the reconstruction. 

The reconstructions shown here are similar to the ones shown in Chapter 6 
for the Born approximation in the forward direction. For small objects and 
refractive indexes the reflection reconstructions are good, but for large 
objects the high frequency part of the reconstruction is distorted. This is 
because the high frequency components, or those with the shortest wave- 
lengths, are first to undergo a 180” phase change. Thus in the 10X, 
reconstructions the edges are distorted until finally, as the refractive index 
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approaches 1.20, there are some small high frequency ripples. (h, refers to 
the wavelength at the center frequency of the transducer bandwidth.) 

Using a more practical frequency range the reconstructions shown in Fig. 
8.8 are obtained. Here the data simulate what might be measured with a 
transducer with a center frequency of 1 MHz and a bandwidth of 1.2 MHz. 
As would be expected, the reconstructions aren’t as good as those shown in 
Fig. 8.7 because some of the low and high frequency information about the 
object is missing. Thus there is very little information in the reconstructions 
other than the location of the edges of the cylinders. The average refractive 
index of each cylinder isn’t reconstructed because that is contained in the low 
frequencies. 

A big problem with reflection tomography is that it doesn’t provide 
information about the object at low frequencies. To a certain extent this 
problem can be rectified by extrapolating the measured object spectrum into 
the low frequency band where the information is missing. A popular 
algorithm for such an extrapolation is the Gerchberg-Papoulis algorithm 
[Ger74], [Pap75]. 

The Gerchberg-Papoulis algorithm is an iterative procedure to combine 
information about the Fourier transform of a function (as might be produced 
by a reflection tomography experiment) with independent space domain 
constraints. Typically, the spatial constraint might be the known support of 
the object or the fact that it is always positive. 

Assume that a reflection tomography experiment has yielded Fo(u, u) as an 
estimate of the Fourier transform of an object’s cross section; its inverse 
Fourier transform fo(x, y) is then the image that would be the result of the 
experiment. From the preceding arguments Fo(u, u) is known in a doughnut- 
shaped region of the (u, u) space; we will denote this region by Dp In 
general, the experiment itself wouldn’t reveal anything about the object 
outside the doughnut-shaped region. If f(x, y) denotes the true cross section 
and F(u, u) the corresponding transform, we can write 

F(u, u)= (u, u) in Df 
elsewhere. (41) 

We will invoke the constraint that the object is known to be spatially limited: 

(KY) inDs 
elsewhere (42) 

where we have used D, to denote the maximum a priori known object size. 
Typically, the inverse Fourier transform of the known data Fo(u, u) will 

lead to a reconstruction that is not spatially limited. The goal of the 
Gerchberg-Papoulis algorithm is to find a reconstruction f *(x, y) that 
satisfies the space constraint and whose Fourier transform F*(u, u) is equal 
to that measured by reflection tomography in region DJ. We will now 
describe how this algorithm can be implemented. 
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Fig. 8.9: In the 
Gerchberg-Papoulis algorithm an 
estimate of a portion of the 
object’s Fourier transform is 
combined with knowledge of its 
spatial support. The method 
iterates until an estimate of the 
object is found that is consistent 
with the known frequency 
domain data and the spatial 
extant of the object. (From 
[Rob85J.) 

Given an initial estimate F,(u, u), a better estimate of the object is found by 
finding the inverse Fourier transform of Fo(u, u) and setting the first iteration 
to be 

flk Y)= IFT {Fo(u, u>> (x,Y) inD, 
0 elsewhere. (43) 

The next iteration is obtained by Fourier transforming f,(x, y) and then 
constructing a composite function in the frequency domain as follows: 

FI(u, u)= ;!‘;;l”:x, y>> (u, u) in D, 
elsewhere (44) 

(FT = Fourier transform). We now construct the next iterate fz(x, y), which 
is an improvement over f,(x, y), by first inverse Fourier transforming Fl(u, 
u) and setting to zero any values that are outside the region 0,. This iterative 
process may be continued to yield f3, f4, and so on, until the difference 
between two successive approximations is below a prespecified bound. This 
is shown schematically in Fig. 8.9. 

The result of applying 150 iterations of the Gerchberg-Papoulis algorithm 
to the reconstructions of Fig. 8.7 is shown in Fig. 8.10. The reader is referred 
to [Rob851 for further details on the application of this algorithm to reflection 
tomography. 

8.4 Reflection Tomography with Point Transmitter/Receivers 

As mentioned before, reflection tomography using point transducers leads 
to line integrals of the object reflectivity function over circular arcs. We will 
now show that it is possible to reconstruct the reflectivity function by carrying 
out a backprojection over circular arcs. The derivation here will follow that of 
Norton and Linzer [Nor79a], [Nor79b]. A more rigorous derivation can be 
found in [Nor8 11. 

8.4.1. Reconstruction Algorithms 

Assume that the object is illuminated by spherical waves produced by a 
point source at 7 = (0, 0). Such a field can be expressed as 

$P(t, F)=p I t 
( > 

t-l’l 
c * 

The field scattered by a single scattering site at position Fcan be expressed as 

I) (t F)=f(F)p s 7 t 
( > 

t-fl 
c * 

(For simplicity we will continue to assume that both the illuminating field and 
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the object are two dimensional.) Since we are operating in the reflection 
mode, we use the same point transducer to record whatever scattered fields 
arrive at that site. Since the illuminating field is omnidirectional, the scattered 
field measured at the point transducer will be given by the following 
integration over the half space in front of the transducer: 

&(t)= j f(qt-2 ;> lifl-1’2 dZ (47) 

The reason for the factor 17(- l/2 is the same as that for the factor l/& in our 
discussion on B-scan imaging and the extra factor of (7(/c represents the 
propagation delay from the point scatterer back to the transducer. Again, as 
was done for the B-scan case, the effect of the transmitted pulse can now be 
deconvolved, at least in principle, and the following estimate for the line 
integral of the reflection data, g(r), can be made: 

where FT{ } indicates a Fourier transform with respect to t and IFT{ } 
represents the corresponding inverse Fourier transform. The function g(r) is 
therefore a measure of line integrals through the object where the variable r 
indicates the distance from the transducer to the measurement arc. The 
variable r is related to t by r = ct/2, where c is the velocity of propagation in 
the medium. 

This type of reflection imaging makes a number of assumptions. Most 
importantly, for (47) to be valid it is necessary for the Born approximation to 
hold. This means that not only must the scattered fields be small compared to 
the incident fields, but the absorption and velocity change of the field must 
also be small. Second, the scatterers in the object must be isotropic scatterers 
so that the field scattered by any point is identical no matter from what 
direction the incident field arrives. 

These line integrals of reflectivity can be measured from different 
directions by surrounding the object with a ring of point transducers. The line 
integrals measured by different transducers can be labeled as g+(r), 4 
indicating the “direction” (and location) of the point transducer in the ring, 
as shown in Fig. 8.11. 

By analogy with the straight ray case it seems appropriate to form an image 
of the object by first filtering each line integral and then backprojecting the 
data over the same lines on which they were measured. Because the 
backprojection operation is linear we can ignore the filter function for now 
and derive a point spread function for the backprojection operator over 
circular arcs. With this information an optimum filter function h(r) will then 
be derived that looks surprisingly like that used in straight ray tomography. 

For now assume that the line integral data, g,Jr), are filtered by the 
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Fig. 8.11: In reflection 
tomography with a point source 
the transducer rotates around the 
object at a radius of R and its 
position is indicated by (R, 4). 
The measured signal, g+(r), 
represents line integrals over 
circular arcs centered at the 
transducer. 

function h(r) to find 

g;(r) =gdr)*h(r). 

The backprojection operation over circular arcs can now be written 

(49) 

f^(r, +I=& 1: gi [PC+; r, 011 & (50) 

where the distance from the transducer at (R, 4) to the reconstruction point at 
(r, 6) is given by 

p(qb; r, t9)=JR2+r2-2Rr cos (O-4) . (51) 

In order to determine h(r) we will now use (50) to reconstruct the image of 
a single scatterer; this image is called the point spread function of the 
backprojection process. For a single scatterer at (r, 6,) the filtered projection 
is 

pr,g(r-p(4; r, e))=P,(r-P(+; r, mw) (52) 

since pr,+, pI, and h are all functions of distance. The function pr,+ represents 
a filtered version of the transmitted pulse; in an actual system the filter could 
be applied before the pulse is transmitted so that simple backprojection would 
produce an ideal reconstruction. 

The reconstruction image is then given by 

p,,&($; r, WA+; ro, e,)l d+. (53) 
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We want h(r) to be such thatfis as close to a Dirac delta function as possible. 
In order to find an optimum h(r) in this manner, a number of approximations 
are necessary. First we expand the argument for g:(r) in the equation above 

~(4; r, e)++; ro, Bo)=[R2+r2-2Rr cos (e-+)11/2 

-[R2+rt--2Rro cos (eo--~)y2. (54) 

Each term on the right-hand side can be expanded by using 

We will now assume that the measurement circle is large enough so that (r/ 
R)2 and (ro/R)2 are both sufficiently small; as a consequence, the terms that 
contain powers of r/R and ro/Ro greater than 2 can be dropped. Therefore the 
difference in distances between the two points can be written as 

~(4; r, ehe; r0, e,)- 
r2 - rt 

-r cos (8-+)+ro cos (e,-+I+- 
4R 

--g cos 2(e-+)+g cos 2ceo-9). (56) 

This can be further simplified to 

~(4; r, wd4; r0, eo)=xcOs (9- Y)+Y,+Y~ cos w-4 (57) 

where 

X= Jr: + r2 - 2ror cos (e - e,) 

tan Y= 
r. sin co-r sin 8 

r. cos eO-r c0s e 

yI =-& (r”-r$ 

1 
y2 = 4~ [ri + r4 - 2r2ri cos 2(e - e,)] l/2 

tan (Y= 
rt sin 2e0-r2 sin 28 
ri cos 2eo- r2 cos 28 * 

(58) 

(59) 

(60) 

(61) 

(62) 

Now (53) can be written as 

P,+[xcos (9- Y)+y,+yz cos 2(4-a)] d4. (63) 
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Let Pr,g(w) denote the Fourier transform of the line integral p,,4(r), that is, 

Pr,m(r)=& jy, P,,+(w)ejwr dw. (64) 

In terms of the Fourier transform of the filtered line integral data, f can be 
written as 

f(r, e)= if d4 {I, dw P,,+(w)e’ /w[Y,+Y2cos2(~-ol)lejwxcos ($- Y). 

(65) 

This result can be further simplified if the measurement radius, R, is large 
compared to both the radii r and r. and the distance between the point 
scatterer and the point of interest in the reconstruction. With this assumption 
it can be shown that both yI and y2 are small and the point spread function can 
be written [Nor79a] 

When the scattering center is located at the origin, the point spread function is 
obtained by using 

~(4; r, e)-d+; 0, O)=r cos (4-e) (67) 

and is given by 

This result can be further simplified by using the Bessel1 identity 

(where q is an arbitrary constant) and rearranging the order of integration to 
find 

f<r, e)= Sm_ pdw)Jdwr) dw (70) 

where we have assumed that Pr,+ is independent of 4 for a scatterer located at 
the origin. 

With an expression for the point spread function it is possible to set it equal 
to a delta function and solve for the optimum filter function. The optimum 
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impulse response 6(x, y) can be written in polar form as 

(71) 

when the scattering center is located at the origin. The optimum filter 
function is then found by noting the identity 

s 
m Jo(rw)w do =i 6(r). (72) 
0 

Rewriting the point spread function to put it into this form and using the fact 
that Jo( *) is an even function, it is easy to show that the optimum form for the 
filtered line integral data is 

P,,Jw) =Iw( . 
2a 

Since P,,+(w) is equal to 

Pr.dw) =~(w)P,*,(w) (74) 

the optimum point spread response will occur when the product of the Fourier 
transform of the transmitted pulse and the reconstruction filter is equal to 

If the spectrum of the transmitted pulse is equal to 

Pt,,(,)=lwI 
2a ’ 

then backprojection, without any additional filtering, will produce the 
optimum reconstruction. 

This filter function is not practical since it emphasizes the high frequencies. 
Generally, a more realistic filter will be a low pass filtered version of the 
optimum filter or 

H(w)=w for IwI< 
2a WC 

N(w)=0 elsewhere. (78) 

Using this filter function the point spread function for the reconstruction 
procedure becomes 

WC51 ~2~c-v f<r, e)= x . (79) 
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Fig. 8.12: A broadband 
reflection tomogram of five 
needles is shown here. In this 
experiment a pixel size of 0.1 
mm, an image size of 300 x 300 
pixels, 120 projections, and 256 
samples per projection were used. 
This figure shows (a) the needle 
array, (b) a diagram of a needle 
array cross section showing sizes 
and spacing, (c) a reflection 
tomogram of an array cross 
section, and (d) a magnified 
(zoomed) view of(c). (These 
images are courtesy of Kris 
Dines, XDA TA Corp., 
Indianapolis, ZN, based on work 
sponsored by National Institute 
of Health Grant #I R43 
CA36673-01.) 

Thus the width of the main sidelobe is given by 

x0=0.30 2

”

=0.3ox, 

(80) 
WC 

where X, is the wavelength of the wave corresponding to the cutoff frequency 
WC. 

The reconstruction procedure can be summarized as follows. First use (48) 
to transform the measured data into measures of line integrals over circular 
arcs. The data should then be filtered with (49) and then backprojected using 
(50). 

8.4.2 Experimental Results 

We would now like to mention experimental results obtained by Kris Dines 
of XDATA Corporation, Indianapolis, IN. In these reconstructions the 
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distance between the point transducer and the object was large enough so that 
the line integrals over circular arcs could be approximated as straight lines; 
the transducer was 200 mm from the center of a lo-mm object. By assuming 
the integration path can be approximated by a straight line the maximum error 
in the integration path is 0.25 mm. 

The reconstruction of Fig. 8.12(c) shows the resolution that is possible 
with this method. The five needles suspended in water represent nearly the 
ideal case since there is no phase shift caused by the object. More 
experimental work is needed to show the viability of this method in human 
patients. 

8.5 Bibliographic Notes 

There is a large body of work that describes the theory of B-scan imaging; 
for a sampler the reader is referred to [Fat80], [Fla81], [Fla83]. This 
technique is in wide use by the medical community and the reader’s attention 
is drawn to the well-known book by Wells [We1771 for an exhaustive 
treatment of the subject. 

One of the first approaches to reflection tomography was by Johnson et al. 
[Joh78] who employed a ray tracing approach to synthetic aperture imaging. 
This approach attempts to correct for refraction and attenuation but ignores 
diffraction. In 1979, Norton and Linzer [Nor79a], [Nor79b] published a 
backprojection-based method for reconstructing ultrasonic reflectivity. A 
more rigorous treatment and a further generalization of this approach were 
then presented in [Nor811 where different possible scanning configurations 
were also discussed. 

More recently, Dines [Din851 has shown experimental results that establish 
the feasibility of this imaging modality, although much work remains to be 
done for improving the quality of the reconstructed image. Also, recently, 
computer simulation results that show the usefulness of spectral extrapolation 
techniques to reflection tomography were presented in [Rob85]. 
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