The All-Loop S-Matrix of $\mathcal{N} = 4$ Super Yang-Mills

Jacob L. Bourjaily
Princeton University & IAS

in collaboration with
N. Arkani-Hamed, F. Cachazo, and J. Trnka
also with Andrew Hodges and S. Caron-Huot,

[arXiv:1012.6032], [arXiv:1012.6030], [arXiv:1008.2958],
Outline

1. Spiritus Movens
 - MHV Amplitudes in Quantum Chromodynamics: A Parable
 - The Generalization of Parke-Taylor’s Formula Through 3-Loops

2. Preliminaries: The (Tree-Level) Analytic S-Matrix, Redux
 - Colour & Kinematics: the Vernacular of the S-Matrix
 - Tree-Level Recursion: Making the Impossible, Possible
 - Momentum Twistors and Geometry: Trivializing Kinematics

3. Beyond Trees: Recursion Relations for Loop-Amplitudes
 - The Loop Integrand in Momentum-Twistor Space
 - Pushing BCFW Forward to All-Loop Orders
 - The Geometry of Forward Limits

4. Local Loop Integrals for Scattering Amplitudes
 - Leading Singularities and Schubert Calculus
 - Manifestly-Finite Momentum-Twistor Integrals
 - Pushing the Analytic S-Matrix Forward
Parke and Taylor’s Heroic Computation

In 1985, Parke and Taylor decided to compute the “leading contribution to” the amplitude for $gg \rightarrow gggg$.

- 220 Feynman diagrams, thousands of terms
- using $\mathcal{N} = 2$ supersymmetry to relate it to e.g., $A_6(g^+, g^+, \phi^+, \phi^+, \phi^-, \phi^-)$
- employing the world’s best supercomputers
Parke and Taylor’s Heroic Computation

In 1985, Parke and Taylor decided to compute the “leading contribution to” the amplitude for $gg \to gggg$.

- 220 Feynman diagrams, thousands of terms
- using $\mathcal{N} = 2$ supersymmetry to relate it to e.g., $A_6(g^+, g^+, \phi^+, \phi^+ , \phi^-, \phi^-)$
- employing the world’s best supercomputers

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION
BY GLUON–GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR

Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.
Parke and Taylor's Heroic Computation

In 1985, Parke and Taylor decided to compute the "leading contribution to" the amplitude for $gg \rightarrow gggg$.

- 220 Feynman diagrams, thousands of terms
- using $\mathcal{N} = 2$ supersymmetry to relate it to e.g., $A_6(g^+, g^+, \phi^+, \phi^+, \phi^-, \phi^-)$
- employing the world's best supercomputers

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON–GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR

Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.
In 1985, Parke and Taylor decided to compute the “leading contribution to” the amplitude for \(gg \rightarrow gggg \).

- 220 Feynman diagrams, thousands of terms
- using \(\mathcal{N} = 2 \) supersymmetry to relate it to e.g., \(A_6(g^+, g^+, \phi^+, \phi^+, \phi^-, \phi^-) \)
- employing the world’s best supercomputers

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON–GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR

Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.
Parke and Taylor’s Heroic Computation

In 1985, Parke and Taylor decided to compute the “leading contribution to” the amplitude for $gg \to gggg$.

- 220 Feynman diagrams, thousands of terms
- using $\mathcal{N} = 2$ supersymmetry to relate it to
e.g., $A_6(g^+, g^+, \phi^+, \phi^+, \phi^-, \phi^-)$
- employing the world’s best supercomputers

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION
BY GLUON–GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR

Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.
In 1985, Parke and Taylor decided to compute the “leading contribution to” the amplitude for $gg \rightarrow gggg$.

- 220 Feynman diagrams, thousands of terms
- using $\mathcal{N} = 2$ supersymmetry to relate it to e.g., $A_6(g^+, g^+, \phi^+, \phi^+, \phi^-, \phi^-)$
- employing the world’s best supercomputers
Parke and Taylor’s Heroic Computation

In 1985, Parke and Taylor decided to compute the “leading contribution to” the amplitude for \(gg \to gggg \).

- 220 Feynman diagrams, thousands of terms
- using \(\mathcal{N} = 2 \) supersymmetry to relate it to \(\mathcal{A}_6(g^+, g^+, \phi^+, \phi^+, \phi^-, \phi^-) \)
- employing the world’s best supercomputers
- final formula: 8 pages long
Parke and Taylor’s Heroic Computation

In 1985, Parke and Taylor decided to compute the “leading contribution to” the amplitude for \(gg \rightarrow gggg \).

- 220 Feynman diagrams, thousands of terms
- using \(\mathcal{N} = 2 \) supersymmetry to relate it to e.g., \(A_6(g^+, g^+, \phi^+, \phi^+, \phi^-, \phi^-) \)
- employing the world’s best supercomputers
- final formula: 8 pages long

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON–GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR

Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.
Parke and Taylor’s Heroic Computation

In 1985, Parke and Taylor decided to compute the “leading contribution to” the amplitude for \(gg \rightarrow gggg \).

- 220 Feynman diagrams, thousands of terms
- using \(\mathcal{N} = 2 \) supersymmetry to relate it to e.g., \(\mathcal{A}_6(g^+, g^+, \phi^+, \phi^+, \phi^-, \phi^-) \)
- employing the world’s best supercomputers
- final formula: 8 pages long

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION
BY GLUON–GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR

Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.
In 1985, Parke and Taylor decided to compute the “leading contribution to” the amplitude for $gg \rightarrow gggg$.

- 220 Feynman diagrams, thousands of terms
- using $\mathcal{N} = 2$ supersymmetry to relate it to e.g., $A_6(g^+, g^+, \phi^+, \phi^+, \phi^-, \phi^-)$
- employing the world’s best supercomputers
- final formula: 8 pages long

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON–GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR

Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.
In 1985, Parke and Taylor decided to compute the “leading contribution to” the amplitude for \(gg \rightarrow gggg \).

- 220 Feynman diagrams, thousands of terms
- using \(\mathcal{N} = 2 \) supersymmetry to relate it to e.g., \(A_6(g^+, g^+, \phi^+, \phi^+, \phi^-, \phi^-) \)
- employing the world’s best supercomputers
- final formula: 8 pages long

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON–GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR

Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.
In 1985, Parke and Taylor decided to compute the “leading contribution to” the amplitude for $gg \rightarrow gggg$.

- 220 Feynman diagrams, thousands of terms
- using $\mathcal{N} = 2$ supersymmetry to relate it to e.g., $A_6(g^+, g^+, \phi^+, \phi^+, \phi^-, \phi^-)$
- employing the world’s best supercomputers
- final formula: 8 pages long

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON–GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR

Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.
Parke and Taylor’s Heroic Computation

In 1985, Parke and Taylor decided to compute the “leading contribution to” the amplitude for \(gg \to gggg \).

- 220 Feynman diagrams, thousands of terms
- using \(\mathcal{N} = 2 \) supersymmetry to relate it to e.g., \(A_6(g^+, g^+, \phi^+, \phi^+, \phi^-, \phi^-) \)
- employing the world’s best supercomputers
- final formula: 8 pages long

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION
BY GLUON–GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR
Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.
Parke and Taylor’s Heroic Computation

In 1985, Parke and Taylor decided to compute the “leading contribution to” the amplitude for $gg \rightarrow gggg$.

- 220 Feynman diagrams, thousands of terms
- using $\mathcal{N} = 2$ supersymmetry to relate it to e.g., $A_6(g^+, g^+, \phi^+, \phi^+, \phi^-, \phi^-)$
- employing the world’s best supercomputers
- final formula: 8 pages long

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON–GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR

Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.
In 1985, Parke and Taylor decided to compute the “leading contribution to” the amplitude for $gg \rightarrow gggg$.

- 220 Feynman diagrams, thousands of terms
- using $N = 2$ supersymmetry to relate it to e.g., $A_6(g^+, g^+, \phi^+, \phi^+, \phi^-, \phi^-)$
- employing the world’s best supercomputers
- final formula: 8 pages long

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON–GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR

Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.
In 1985, Parke and Taylor decided to compute the “leading contribution to” the amplitude for \(gg \rightarrow gggg \).

- 220 Feynman diagrams, thousands of terms
- using \(\mathcal{N} = 2 \) supersymmetry to relate it to e.g., \(A_6(g^+, g^+, \phi^+, \phi^+, \phi^-, \phi^-) \)
- employing the world’s best supercomputers
- final formula: 8 pages long

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON–GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR

Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.
Parke and Taylor’s Heroic Computation

In 1985, Parke and Taylor decided to compute the “leading contribution to” the amplitude for \(gg \rightarrow gggg \).

- 220 Feynman diagrams, thousands of terms
- using \(N = 2 \) supersymmetry to relate it to e.g., \(A_6(g^+, g^+, \phi^+, \phi^+, \phi^-, \phi^-) \)
- employing the world’s best supercomputers
- final formula: 8 pages long

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION BY GLUON–GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR

Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 USA

Received 13 September 1985

The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast numerical calculations.
In 1985, Parke and Taylor decided to compute the “leading contribution to” the amplitude for \(gg \rightarrow gggg \).

- 220 Feynman diagrams, thousands of terms
- using \(\mathcal{N} = 2 \) supersymmetry to relate it to
 \[A_6(g^+, g^+, \phi^+, \phi^+, \phi^-, \phi^-) \]
- employing the world’s best supercomputers
- final formula: 8 pages long

Details of the calculation, together with a full exposition of our techniques, will be given in a forthcoming article. Furthermore, we hope to obtain a simple analytic form for the answer, making our result not only an experimentalist’s, but also a theorist’s delight.
Parke and Taylor’s Heroic Computation: Six Months Later

Six months later, they had come upon a “guess”, not just for not their amplitude but an infinite number of amplitudes!

In modern notation, they suggested that
Six months later, they had come upon a “guess”, not just for not their amplitude but an infinite number of amplitudes!

In modern notation, they suggested that
Six months later, they had come upon a “guess”, not just for not their amplitude but an infinite number of amplitudes!

In modern notation, they suggested that

\[\mathcal{A}_n^{(2)}(\ldots, j^-, \ldots, k^-, \ldots) \]
Six months later, they had come upon a “guess”, not just for not their amplitude but an infinite number of amplitudes! In modern notation, they suggested that

\[A_n^{(2)}(\ldots, j^-, \ldots, k^-, \ldots) = \frac{\langle j \ k \rangle^4}{\langle 1 \ 2 \rangle \langle 2 \ 3 \rangle \cdots \langle n \ 1 \rangle} \]
Generalizing Parke-Taylor’s Formula Through 3-Loops:

In recent months, similar simplifications have been ‘guessed’ (and checked):

$$A_n^{(2)}(\ldots, j^-, \ldots, k^-, \ldots) = \frac{\langle j \ k \rangle^4}{\langle 1 \ 2 \rangle \langle 2 \ 3 \rangle \cdots \langle n \ 1 \rangle}$$
Generalizing Parke-Taylor’s Formula Through 3-Loops:

In recent months, similar simplifications have been ‘guessed’ (and checked):

\[A_n^{(2)}(\ldots, j^-, \ldots, k^-, \ldots) = \frac{\langle j \ k \rangle^4}{\langle 1 \ 2 \rangle \langle 2 \ 3 \rangle \cdots \langle n \ 1 \rangle} \]

\[\times \left\{ \begin{array}{c} 1 \end{array} \right\} \]
Generalizing Parke-Taylor’s Formula Through 3-Loops:

In recent months, similar simplifications have been ‘guessed’ (and checked):

\[A_n^{(2)}(\ldots, j^-, \ldots, k^-, \ldots) = \frac{\langle j \, k \rangle^4}{\langle 1 \, 2 \rangle \langle 2 \, 3 \rangle \cdots \langle n \, 1 \rangle} \times \left\{ 1 + \sum_{i < j < i} X \right\} \]
Generalizing Parke-Taylor’s Formula Through 3-Loops:

In recent months, similar simplifications have been ‘guessed’ (and checked):

\[
\mathcal{A}_{n}^{(2)}(\ldots, j^{-}, \ldots, k^{-}, \ldots) = \frac{\langle j \ k \rangle^4}{\langle 1 \ 2 \rangle \langle 2 \ 3 \rangle \cdots \langle n \ 1 \rangle}
\]

\[
\times \left\{ 1 + \sum_{i<j<i} \left(1 + \sum_{i<j<k<l<i} \cdots \right) \right\}
\]
In recent months, similar simplifications have been ‘guessed’ (and checked):

\[A_n^{(2)}(\ldots, j^-, \ldots, k^-, \ldots) = \frac{\langle j \, k \rangle^4}{\langle 1 \, 2 \rangle \langle 2 \, 3 \rangle \cdots \langle n \, 1 \rangle} \]

\[\times \left\{ 1 + \sum_{i<j<i}^{i<i<j<i} + \frac{1}{2} \sum_{i<j<k<l<i}^{i<j<k<l<i} + \frac{1}{3} \sum_{i_1 \leq i_2 < j_1 \leq j_2 \leq k_1 \leq k_2 < i_1} \right\} \]
Simple Sources of Simplification

An n-point scattering amplitude is specified by listing each particle’s:

- momentum, (which we take to be incoming)
- helicity
- colour
Simple Sources of Simplification

An n-point scattering amplitude is specified by listing each particle’s:

- momentum, (which we take to be incoming)
- helicity
- colour
Simple Sources of Simplification

An n-point scattering amplitude is specified by listing each particle’s:

- momentum, (which we take to be incoming)
- helicity
- colour
Simple Sources of Simplification

An n-point scattering amplitude is specified by listing each particle’s:

- momentum, (which we take to be incoming)
- helicity
- colour
Simple Sources of Simplification

An \(n \)-point scattering amplitude is specified by listing each particle’s:

- momentum, (which we take to be incoming)
- helicity
- colour
Simple Sources of Simplification

An n-point scattering amplitude is specified by listing each particle’s:

- momentum, (which we take to be incoming)
- helicity
- colour

\[\begin{align*}
\text{momentum, (which we take to be incoming)} \\
\text{helicity} \\
\text{colour}
\end{align*}\]
Simple Sources of Simplification: Colour-Ordering

An n-point scattering amplitude is specified by listing each particle’s:

- momentum, (which we take to be incoming)
- helicity
- colour

By shuffling all colour-factors to the outside of every Feynman diagram, we can write the amplitude* for any desired colour-ordering in terms of any other.

Colour-ordered partial amplitudes

$$A_n(\{p_a\}) = \sum \text{Tr}(T^{a_1} \cdots T^{a_n}) A_n(p_{a_1}, \ldots, p_{a_n})$$

e.g. $A_9(1^+, 2^+, 3^-, 4^+, 5^-, 6^+, 7^-, 8^+, 9^-)$
Simple Sources of Simplification: Colour-Ordering

An n-point scattering amplitude is specified by listing each particle’s:

- momentum, (which we take to be incoming)
- helicity
- colour

By shuffling all colour-factors to the outside of every Feynman diagram, we can write the amplitude* for any desired colour-ordering in terms of any other.

Colour-ordered partial amplitudes

$$A_n(\{p_a\}) = \sum \text{Tr}(T^{a_1} \cdots T^{a_n})A_n(p_{a_1}, \ldots, p_{a_n})$$

e.g. $A_9(1^+, 2^+, 3^-, 4^+, 5^-, 6^+, 7^-, 8^+, 9^-)$
Simple Sources of Simplification: Colour-Ordering

An n-point scattering amplitude is specified by listing each particle’s:

- momentum, (which we take to be incoming)
- helicity
- colour

By shuffling all colour-factors to the outside of every Feynman diagram, we can write the amplitude* for any desired colour-ordering in terms of any other.

Colour-ordered partial amplitudes

$$A_n(\{p_a\}) = \sum \text{Tr}(T^{a_1} \cdots T^{a_n}) A_n(p_{a_1}, \ldots, p_{a_n})$$

e.g. $A_9(1^+, 2^+, 3^-, 4^+, 5^-, 6^+, 7^-, 8^+, 9^-)$
An \(n \)-point scattering amplitude is specified by listing each particle’s:

- momentum, (which we take to be incoming)
- helicity
- colour
Simple Sources of Simplification: Spinor-Helicity Variables

An n-point scattering amplitude is specified by listing each particle’s:

- momentum, (which we take to be incoming)
- helicity
- colour

Scattering amplitudes for massless particles are not directly functions four-momenta, but functions of spinor variables:

$$p_a^\mu \rightarrow p_a^{\alpha \dot{\alpha}} \equiv p_a^\mu \sigma_\mu^{\alpha \dot{\alpha}} = \left(\begin{array}{ccc} p_0^a + p_3^a & p_1^a - ip_2^a \\ p_1^a + ip_2^a & p_0^a - p_3^a \end{array} \right)$$
Simple Sources of Simplification: Spinor-Helicity Variables

An n-point scattering amplitude is specified by listing each particle’s:

- momentum, (which we take to be incoming)
- helicity
- colour

Scattering amplitudes for massless particles are not directly functions four-momenta, but functions of spinor variables:

$$p_a^\mu \rightarrow p_a^\alpha \dot{\alpha} \equiv p_a^\mu \sigma_\mu^{\alpha \dot{\alpha}} = \begin{pmatrix} p_a^0 + p_a^3 & p_a^1 - ip_a^2 \\ p_a^1 + ip_a^2 & p_a^0 - p_a^3 \end{pmatrix}$$
Simple Sources of Simplification: Spinor-Helicity Variables

An \(n \)-point scattering amplitude is specified by listing each particle’s:
- momentum, (which we take to be incoming)
- helicity
- colour

Scattering amplitudes for \textit{massless} particles are not directly functions four-momenta, but functions of \textit{spinor variables}:

\[
p^\mu_a \rightarrow p^\alpha_\dot{\alpha}_a \equiv p^\mu_a \sigma^\alpha_\mu_\dot{\alpha}_a = \begin{pmatrix} p^0_a + p^3_a & p^1_a - ip^2_a \\ p^1_a + ip^2_a & p^0_a - p^3_a \end{pmatrix}
\]

Notice that \(p^\mu p_\mu = \det(p^{\alpha_\dot{\alpha}}) \). For massless particles, \(\det(p^{\alpha_\dot{\alpha}}) = 0 \).
An n-point scattering amplitude is specified by listing each particle’s:

- momentum, (which we take to be incoming)
- helicity
- colour

Scattering amplitudes for \textbf{massless} particles are not directly functions four-momenta, but functions of \textbf{spinor variables}:

$$p^\mu_a \to p^\alpha_{\dot{\alpha}} = p^\mu_a \sigma^\alpha_{\mu \dot{\alpha}} = \begin{pmatrix} p^0_a + p^3_a & p^1_a - ip^2_a \\ p^1_a + ip^2_a & p^0_a - p^3_a \end{pmatrix}$$

Notice that $p^\mu p_\mu = \det(p^{\alpha \dot{\alpha}})$. For massless particles, $\det(p^{\alpha \dot{\alpha}}) = 0$.
Simple Sources of Simplification: Spinor-Helicity Variables

An \(n \)-point scattering amplitude is specified by listing each particle’s:
- momentum, (which we take to be incoming)
- helicity
- colour

Scattering amplitudes for massless particles are not directly functions four-momenta, but functions of spinor variables:

\[
p_a^\mu \mapsto p_a^{\alpha \dot{\alpha}} \equiv p_a^\mu \sigma^\mu_{\alpha \dot{\alpha}} = \begin{pmatrix} p_a^0 + p_a^3 & p_a^1 - ip_a^2 \\ p_a^1 + ip_a^2 & p_a^0 - p_a^3 \end{pmatrix} \equiv \lambda_a^{\alpha \dot{\alpha}}
\]

Notice that \(p^\mu p_\mu = \det(p^{\alpha \dot{\alpha}}) \). For massless particles, \(\det(p^{\alpha \dot{\alpha}}) = 0 \).
An \(n \)-point scattering amplitude is specified by listing each particle’s:
- momentum, (which we take to be incoming)
- helicity
- colour

Scattering amplitudes for \textbf{massless} particles are not directly functions four-momenta, but functions of \textbf{spinor variables}:

\[
p^\mu_a \rightarrow p^\alpha_\dot{\alpha}_a \equiv p^\mu_a \sigma^\alpha_\mu \dot{\alpha} = \left(\begin{array}{cc} p^0_a + p^3_a & p^1_a - ip^2_a \\ p^1_a + ip^2_a & p^0_a - p^3_a \end{array} \right) \equiv \lambda^\alpha_a \tilde{\lambda}^{\dot{\alpha}}_a
\]

Useful Lorentz-invariant scalars:
\[
\langle ab \rangle \equiv \begin{vmatrix} \lambda^1_a & \lambda^1_b \\ \lambda^2_a & \lambda^2_b \end{vmatrix} , \quad [ab] \equiv \begin{vmatrix} \tilde{\lambda}^1_a & \tilde{\lambda}^1_b \\ \tilde{\lambda}^2_a & \tilde{\lambda}^2_b \end{vmatrix}
\]

\[
(p_a + p_b)^2 = \langle ab \rangle [ba] \equiv s_{ab} , \quad \langle a| (b+\ldots+c)|d \rangle \equiv \langle a| (b)[b+\ldots+c][c]|d \rangle.
\]
Simple Sources of Simplification: $\mathcal{N} = 4$ Supersymmetry

An n-point scattering amplitude is specified by listing each particle’s:

- momentum, (which we take to be incoming)
- helicity
- colour

In $\mathcal{N} = 4$, all external states are related by supersymmetry.

- at tree-level, pure-glue amplitudes are the same in $\mathcal{N} = 4$ and $\mathcal{N} = 0$
- all amplitudes with m ‘$-$’ helicity particles are related
Simple Sources of Simplification: $\mathcal{N} = 4$ Supersymmetry

An n-point scattering amplitude is specified by listing each particle’s:

- momentum, (which we take to be incoming)
- helicity
- colour

In $\mathcal{N} = 4$, all external states are related by supersymmetry.

- at tree-level, pure-glue amplitudes are the same in $\mathcal{N} = 4$ and $\mathcal{N} = 0$
- all amplitudes with m ‘$-$’ helicity particles are related
Simple Sources of Simplification: $\mathcal{N} = 4$ Supersymmetry

An n-point scattering amplitude is specified by listing each particle’s:

- momentum, (which we take to be incoming)
- helicity
- colour

In $\mathcal{N} = 4$, all external states are related by supersymmetry.

- at tree-level, pure-glue amplitudes are the same in $\mathcal{N} = 4$ and $\mathcal{N} = 0$
- all amplitudes with m ‘$-$’ helicity particles are related
Simple Sources of Simplification: $\mathcal{N} = 4$ Supersymmetry

An n-point scattering amplitude is specified by listing each particle’s:

- momentum, (which we take to be incoming)
- helicity
- colour

In $\mathcal{N} = 4$, all external states are related by supersymmetry.

- at tree-level, pure-glue amplitudes are the same in $\mathcal{N} = 4$ and $\mathcal{N} = 0$
- all amplitudes with m ‘$-$’ helicity particles are related

N^k MHV Classification of Amplitudes

- $A_n^{(m=0)} (+, \ldots, +) = 0$
- $A_n^{(1)} (+, \ldots, - , \ldots, +) = 0 \ (n > 3)$
- $A_n^{(2)} (j^- , \ldots, k^-) = \frac{\langle j \ k \rangle^4}{\langle 1 \ 2 \rangle \langle 2 \ 3 \rangle \cdots \langle n \ 1 \rangle}$
Simple Sources of Simplification: $\mathcal{N} = 4$ Supersymmetry

An n-point scattering amplitude is specified by listing each particle’s:
- momentum, (which we take to be incoming)
- helicity
- colour

In $\mathcal{N} = 4$, all external states are related by supersymmetry.
- at tree-level, pure-glue amplitudes are the same in $\mathcal{N} = 4$ and $\mathcal{N} = 0$
- all amplitudes with m ‘$-$’ helicity particles are related

\mathcal{N}^k MHV Classification of Amplitudes

\[A_n^{(m=0)} (+, \ldots, +) = 0 \]
\[A_n^{(1)} (+, \ldots, -, \ldots, +) = 0 \quad (n > 3) \]
\[A_n^{(2)} (j^-, \ldots, k^-) = \frac{\langle j k \rangle^4}{\langle 12 \rangle \langle 23 \rangle \cdots \langle n 1 \rangle} \]
An n-point scattering amplitude is specified by listing each particle’s:

- momentum, (which we take to be incoming)
- helicity
- colour

In $\mathcal{N} = 4$, all external states are related by supersymmetry.

- at tree-level, pure-glue amplitudes are the same in $\mathcal{N} = 4$ and $\mathcal{N} = 0$
- all amplitudes with m ‘−’ helicity particles are related

N^kMHV Classification of Amplitudes

- $A_n^{(m=0)}(+, \ldots, +) = 0$
- $A_n^{(1)}(+, \ldots, -, \ldots, +) = 0 \quad (n > 3)$
- $A_n^{(2)}(j^-, \ldots, k^-) = \frac{\langle j k \rangle^4}{\langle 12 \rangle \langle 23 \rangle \cdots \langle n1 \rangle}$
An n-point scattering amplitude is specified by listing each particle’s:

- momentum, (which we take to be incoming)
- helicity
- colour

In $\mathcal{N} = 4$, all external states are related by supersymmetry.
- at tree-level, pure-glue amplitudes are the same in $\mathcal{N} = 4$ and $\mathcal{N} = 0$
- all amplitudes with m ‘−’ helicity particles are related

N^kMHV Classification of Amplitudes

- $A_n^{(m=0)}(+,\ldots,+)=0$
- $A_n^{(1)}(+,\ldots,−,\ldots,+)=0$ $(n>3)$
- $A_n^{(2)}(j^−,\ldots,k^−)=\frac{\langle j\ k\rangle^4}{\langle 1\ 2\rangle\langle 2\ 3\rangle\cdots\langle n\ 1\rangle}$
Simple Sources of Simplification: $\mathcal{N} = 4$ Supersymmetry

An n-point scattering amplitude is specified by listing each particle’s:

- momentum, (which we take to be incoming)
- helicity
- colour

In $\mathcal{N} = 4$, all external states are related by supersymmetry.

- at tree-level, pure-glue amplitudes are the same in $\mathcal{N} = 4$ and $\mathcal{N} = 0$
- all amplitudes with m ‘$-$’ helicity particles are related

\mathcal{N}^k MHV Classification of Amplitudes

- $A_n^{(m=0)} (+, \ldots, +) = 0$
- $A_n^{(1)} (+, \ldots, -, \ldots, +) = 0 \quad (n > 3)$
- $A_n^{(2)} (j^-, \ldots, k^-) = \frac{\langle j k \rangle^4}{\langle 1 2 \rangle \langle 2 3 \rangle \cdots \langle n 1 \rangle}$
Preliminaries: The (Tree-Level) Analytic S-Matrix, Redux
Beyond Trees: Recursion Relations for Loop-Amplitudes
Local Loop Integrals for Scattering Amplitudes

Colour & Kinematics: the Vernacular of the S-Matrix
Tree-Level Recursion: Making the Impossible, Possible
Momentum Twistors and Geometry: Trivializing Kinematics

Analytic S-Matrix Redux: Tree-Level Recursion Relations

Tree amplitudes are entirely fixed by analyticity.
Consider the simplest deformation of any amplitude: \(A_n \mapsto \hat{A}_n(z) \)

\[\lambda_1 \mapsto \hat{\lambda}_1 = \lambda_1 + z\lambda_n \]
Tree amplitudes are entirely fixed by analyticity.

Consider the simplest deformation of any amplitude: \(A_n \mapsto \hat{A}_n(z) \)

\[
\lambda_1 \mapsto \hat{\lambda}_1 \equiv \lambda_1 + z\lambda_n
\]
Analytic S-Matrix Redux: Tree-Level Recursion Relations

Tree amplitudes are entirely fixed by analyticity.
Consider the simplest deformation of any amplitude: $A_n \mapsto \hat{A}_n(z)$

$$\lambda_1 \mapsto \hat{\lambda}_1 \equiv \lambda_1 + z\lambda_n$$

![Diagram](image-url)
Tree amplitudes are entirely fixed by analyticity.
Consider the simplest deformation of any amplitude: $\mathcal{A}_n \rightarrow \hat{\mathcal{A}}_n(z)$
(consistent with momentum conservation)

$$\lambda_1 \mapsto \hat{\lambda}_1 \equiv \lambda_1 + z\lambda_n \quad \tilde{\lambda}_n \mapsto \tilde{\hat{\lambda}}_n \equiv \tilde{\lambda}_n - z\tilde{\lambda}_1$$
Tree amplitudes are entirely fixed by analyticity.

Consider the simplest deformation of any amplitude: \(A_n \mapsto \hat{A}_n(z) \)
(consistent with momentum conservation)

\[
\lambda_1 \mapsto \hat{\lambda}_1 \equiv \lambda_1 + z\lambda_n \quad \tilde{\lambda}_n \mapsto \hat{\tilde{\lambda}}_n \equiv \tilde{\lambda}_n - z\tilde{\lambda}_1
\]

\[
A_n = \hat{A}_n(z = 0)
\]
Tree amplitudes are entirely fixed by analyticity.

Consider the simplest deformation of any amplitude: $A_n \rightarrow \hat{A}_n(z)$

(consistent with momentum conservation)

$$\lambda_1 \mapsto \hat{\lambda}_1 \equiv \lambda_1 + z\lambda_n \quad \tilde{\lambda}_n \mapsto \hat{\tilde{\lambda}}_n \equiv \tilde{\lambda}_n - z\tilde{\lambda}_1$$

$$A_n = \hat{A}_n(z = 0) = \oint_{z=0} dz \frac{\hat{A}_n(z)}{z}$$
Tree amplitudes are entirely fixed by analyticity.

Consider the simplest deformation of any amplitude: $\mathcal{A}_n \mapsto \hat{\mathcal{A}}_n(z)$

(consistent with momentum conservation)

$$\lambda_1 \mapsto \hat{\lambda}_1 \equiv \lambda_1 + z\lambda_n$$

$$\tilde{\lambda}_n \mapsto \tilde{\hat{\lambda}}_n \equiv \tilde{\lambda}_n - z\tilde{\lambda}_1$$

$$\mathcal{A}_n = \hat{\mathcal{A}}_n(z = 0) = \int_{z=0} dz \frac{\hat{\mathcal{A}}_n(z)}{z}$$
Analytic S-Matrix Redux: Tree-Level Recursion Relations

Tree amplitudes are entirely fixed by analyticity.

Consider the simplest deformation of any amplitude: \(A_n \mapsto \hat{A}_n(z) \)
(consistent with momentum conservation)

\[
\lambda_1 \mapsto \hat{\lambda}_1 \equiv \lambda_1 + z \lambda_n \\
\tilde{\lambda}_n \mapsto \hat{\tilde{\lambda}}_n \equiv \tilde{\lambda}_n - z \tilde{\lambda}_1
\]

\[
A_n = \hat{A}_n(z = 0) = \oint \frac{d\lambda}{z} \hat{A}_n(z)
\]

\[
\lambda_1, \tilde{\lambda}_n
\]

\(\lambda_1, \tilde{\lambda}_n \)

The All-Loop S-Matrix of \(\mathcal{N} = 4 \) Super Yang-Mills
Analytic S-Matrix Redux: Tree-Level Recursion Relations

Tree amplitudes are entirely fixed by analyticity.

Consider the simplest deformation of any amplitude: $A_n \rightarrow \hat{A}_n(z)$

(consistent with momentum conservation)

$\lambda_1 \mapsto \hat{\lambda}_1 \equiv \lambda_1 + z\lambda_n$

$\tilde{\lambda}_n \mapsto \tilde{\hat{\lambda}}_n \equiv \tilde{\lambda}_n - z\tilde{\lambda}_1$

$A_n = \hat{A}_n(z = 0) = \int_0^\infty dz \frac{\hat{A}_n(z)}{z}$

$\hat{1}(z) \quad \hat{n}(z)$
Preliminaries: The (Tree-Level) Analytic S-Matrix, Redux
Beyond Trees: Recursion Relations for Loop-Amplitudes
Local Loop Integrals for Scattering Amplitudes

Tree-Level Recursion: Making the Impossible, Possible
Momentum Twistors and Geometry: Trivializing Kinematics

Analytic S-Matrix Redux: Tree-Level Recursion Relations

Tree amplitudes are entirely fixed by analyticity.
Consider the simplest deformation of any amplitude: $A_n \mapsto \hat{A}_n(z)$
(consistent with momentum conservation)

$$\lambda_1 \mapsto \hat{\lambda}_1 \equiv \lambda_1 + z\lambda_n$$
$$\tilde{\lambda}_n \mapsto \hat{\tilde{\lambda}}_n \equiv \tilde{\lambda}_n - z\tilde{\lambda}_1$$

$$A_n = \hat{A}_n(z = 0) = \int \frac{\hat{A}_n(z)}{z} \text{d}z$$

20th January 2011 University of North Carolina at Chapel Hill

The All-Loop S-Matrix of $\mathcal{N} = 4$ Super Yang-Mills
Tree amplitudes are entirely fixed by analyticity.

Consider the simplest deformation of any amplitude: \(A_n \mapsto \hat{A}_n(z) \)

(consistent with momentum conservation)

\[
\lambda_1 \mapsto \hat{\lambda}_1 \equiv \lambda_1 + z\lambda_n \\
\tilde{\lambda}_n \mapsto \tilde{\hat{\lambda}}_n \equiv \tilde{\lambda}_n - z\tilde{\lambda}_1
\]

\[
A_n = \hat{A}_n(z = 0) = \oint dz \frac{\hat{A}_n(z)}{z}
\]
Tree amplitudes are entirely fixed by analyticity.

Consider the simplest deformation of any amplitude: $A_n \mapsto \hat{A}_n(z)$

(consistent with momentum conservation)

$$\lambda_1 \mapsto \hat{\lambda}_1 \equiv \lambda_1 + z\lambda_n \quad \tilde{\lambda}_n \mapsto \hat{\tilde{\lambda}}_n \equiv \tilde{\lambda}_n - z\tilde{\lambda}_1$$

$$A_n = \hat{A}_n(z = 0) = \int_{z=0} dz \frac{\hat{A}_n(z)}{z}$$
Tree amplitudes are entirely fixed by analyticity.

Consider the simplest deformation of any amplitude: $A_n \rightarrow \hat{A}_n(z)$

(consistent with momentum conservation)

$$
\lambda_1 \mapsto \hat{\lambda}_1 \equiv \lambda_1 + z\lambda_n \quad \tilde{\lambda}_n \mapsto \hat{\tilde{\lambda}}_n \equiv \tilde{\lambda}_n - z\tilde{\lambda}_1
$$

$$
A_n = \hat{A}_n(z = 0) = \oint_{z=0} dz \frac{\hat{A}_n(z)}{z}
$$
Tree amplitudes are entirely fixed by analyticity.

Consider the simplest deformation of any amplitude: \(A_n \mapsto \hat{A}_n(z) \)
(consistent with momentum conservation)

\[
\lambda_1 \mapsto \tilde{\lambda}_1 \equiv \lambda_1 + z\lambda_n \quad \tilde{\lambda}_n \mapsto \hat{\lambda}_n \equiv \tilde{\lambda}_n - z\tilde{\lambda}_1
\]

\[
A_n = \hat{A}_n(z = 0) = \oint_{z=0} d\tilde{z} \frac{\hat{A}_n(z)}{z}
\]
Tree amplitudes are entirely fixed by analyticity.

Consider the simplest deformation of any amplitude: $A_n \mapsto \hat{A}_n(z)$

(consistent with momentum conservation)

$$\lambda_1 \mapsto \hat{\lambda}_1 \equiv \lambda_1 + z\lambda_n$$

$$\tilde{\lambda}_n \mapsto \tilde{\hat{\lambda}}_n \equiv \tilde{\lambda}_n - z\tilde{\lambda}_1$$

$$A_n = \hat{A}_n(z = 0) = \int \frac{d\hat{A}_n(z)}{z}$$
Tree amplitudes are entirely fixed by analyticity.

Consider the simplest deformation of any amplitude: \(A_n \mapsto \hat{A}_n(z) \) (consistent with momentum conservation)

\[
\lambda_1 \mapsto \hat{\lambda}_1 \equiv \lambda_1 + z\lambda_n
\]
\[
\tilde{\lambda}_n \mapsto \hat{\tilde{\lambda}}_n \equiv \tilde{\lambda}_n - z\tilde{\lambda}_1
\]

\[
A_n = \hat{A}_n(z = 0) = \oint_{z=0} dz \frac{\hat{A}_n(z)}{z}
\]
Tree amplitudes are entirely fixed by analyticity.

Consider the simplest deformation of any amplitude: \(A_n \mapsto \hat{A}_n(z) \)

(consistent with momentum conservation)

\[
\lambda_1 \mapsto \hat{\lambda}_1 \equiv \lambda_1 + z\lambda_n \quad \quad \tilde{\lambda}_n \mapsto \tilde{\hat{\lambda}}_n \equiv \tilde{\lambda}_n - z\tilde{\lambda}_1
\]

\[
A_n = \hat{A}_n(z = 0) = \oint_{z=0} dz \frac{\hat{A}_n(z)}{z}
\]
Tree amplitudes are entirely fixed by analyticity.

Consider the simplest deformation of any amplitude: $A_n \mapsto \hat{A}_n(z)$

(consistent with momentum conservation)

$$\lambda_1 \mapsto \hat{\lambda}_1 \equiv \lambda_1 + z\lambda_n \quad \tilde{\lambda}_n \mapsto \hat{\tilde{\lambda}}_n \equiv \tilde{\lambda}_n - z\tilde{\lambda}_1$$

$$A_n = \hat{A}_n(z = 0) = \oint_{z=0} dz \frac{\hat{A}_n(z)}{z}$$
Tree amplitudes are entirely fixed by analyticity.
Consider the simplest deformation of any amplitude: $A_n \mapsto \hat{A}_n(z)$
(consistent with momentum conservation)

$$
\lambda_1 \mapsto \hat{\lambda}_1 \equiv \lambda_1 + z\lambda_n \quad \tilde{\lambda}_n \mapsto \tilde{\hat{\lambda}}_n \equiv \tilde{\lambda}_n - z\tilde{\lambda}_1
$$

$$
A_n = \hat{A}_n(z = 0) = \oint_{z=0} d\lambda \frac{\hat{A}_n(z)}{z}
$$
Analytic S-Matrix Redux: Tree-Level Recursion Relations

Tree amplitudes are entirely fixed by analyticity.

Consider the simplest deformation of any amplitude: $A_n \rightarrow \hat{A}_n(z)$

(consistent with momentum conservation)

$$\lambda_1 \mapsto \hat{\lambda}_1 \equiv \lambda_1 + z\lambda_n \quad \tilde{\lambda}_n \mapsto \tilde{\hat{\lambda}}_n \equiv \tilde{\lambda}_n - z\tilde{\lambda}_1$$

$$A_n = \hat{A}_n(z = 0) = \oint \frac{d\hat{A}_n(z)}{z}$$
Tree amplitudes are entirely fixed by analyticity.

Consider the simplest deformation of any amplitude: \(A_n \rightarrow \widehat{A}_n(z) \)

(consistent with momentum conservation)

\[
\lambda_1 \rightarrow \widehat{\lambda}_1 \equiv \lambda_1 + z\lambda_n \\
\tilde{\lambda}_n \rightarrow \widehat{\tilde{\lambda}}_n \equiv \tilde{\lambda}_n - z\tilde{\lambda}_1
\]

\[
A_n = \widehat{A}_n(z = 0) = \oint_{z=0} dz \frac{\widehat{A}_n(z)}{z}
\]
Tree amplitudes are entirely fixed by analyticity.

Consider the simplest deformation of any amplitude: \(A_n \mapsto \hat{A}_n(z) \)
(consistent with momentum conservation)

\[
\begin{align*}
\lambda_1 &\mapsto \hat{\lambda}_1 \equiv \lambda_1 + z\lambda_n \\
\hat{\lambda}_n &\mapsto \hat{\tilde{\lambda}}_n \equiv \tilde{\lambda}_n - z\tilde{\lambda}_1 \\
A_n &= \hat{A}_n(z = 0) = \oint_{z=0} dz \frac{\hat{A}_n(z)}{z}
\end{align*}
\]
Analytic S-Matrix Redux: Tree-Level Recursion Relations

Tree amplitudes are entirely fixed by analyticity.

Consider the simplest deformation of any amplitude: $A_n \rightarrow \hat{A}_n(z)$

(consistent with momentum conservation)

$$
\lambda_1 \rightarrow \hat{\lambda}_1 \equiv \lambda_1 + z\lambda_n \quad \tilde{\lambda}_n \rightarrow \tilde{\hat{\lambda}}_n \equiv \tilde{\lambda}_n - z\tilde{\lambda}_1
$$

$$
A_n = \hat{A}_n(z = 0) = \oint_{z=0} dz \frac{\hat{A}_n(z)}{z}
$$
Tree amplitudes are entirely fixed by analyticity.

Consider the simplest deformation of any amplitude: \(A_n \rightarrow \hat{A}_n(z) \)

(consistent with momentum conservation)

\[
\lambda_1 \mapsto \hat{\lambda}_1 \equiv \lambda_1 + z\lambda_n \\
\tilde{\lambda}_n \mapsto \hat{\tilde{\lambda}}_n \equiv \tilde{\lambda}_n - z\tilde{\lambda}_1
\]

\[
A_n = \hat{A}_n(z = 0) = \oint \frac{dz}{z} \hat{A}_n(z)
\]
Tree amplitudes are entirely fixed by analyticity.

Consider the simplest deformation of any amplitude: $A_n \mapsto \hat{A}_n(z)$
(consistent with momentum conservation)

$$\lambda_1 \mapsto \hat{\lambda}_1 \equiv \lambda_1 + z\lambda_n \quad \tilde{\lambda}_n \mapsto \tilde{\hat{\lambda}}_n \equiv \tilde{\lambda}_n - z\tilde{\lambda}_1$$

$$A_n = \hat{A}_n(z = 0) = - \int_{z \neq 0} dz \frac{\hat{A}_n(z)}{z}$$
Tree amplitudes are entirely fixed by analyticity.

Consider the simplest deformation of any amplitude: \(A_n \rightarrow \hat{A}_n(z) \)

(consistent with momentum conservation)

\[
\lambda_1 \mapsto \hat{\lambda}_1 \equiv \lambda_1 + z \lambda_n \\
\tilde{\lambda}_n \mapsto \tilde{\hat{\lambda}}_n \equiv \tilde{\lambda}_n - z \tilde{\lambda}_1
\]

\[
A_n = \hat{A}_n(z = 0) = - \int \frac{dz \hat{A}_n(z)}{z}
\]
Tree amplitudes are entirely fixed by analyticity.

Consider the simplest deformation of any amplitude: $A_n \mapsto \hat{A}_n(z)$

(consistent with momentum conservation)

$$\lambda_1 \mapsto \hat{\lambda}_1 \equiv \lambda_1 + z\lambda_n \quad \tilde{\lambda}_n \mapsto \hat{\tilde{\lambda}}_n \equiv \tilde{\lambda}_n - z\tilde{\lambda}_1$$

$$A_n = \hat{A}_n(z = 0) = -\int_{z\neq 0} dz \frac{\hat{A}_n(z)}{z}$$

\[\begin{array}{c}
\hat{1}(z) \\
\hat{n}(z)
\end{array} \]
Tree amplitudes are entirely fixed by analyticity.

Consider the simplest deformation of any amplitude: \(A_n \mapsto \hat{A}_n(z) \)
(consistent with momentum conservation)

\[
\lambda_1 \mapsto \hat{\lambda}_1 \equiv \lambda_1 + z\lambda_n \\
\tilde{\lambda}_n \mapsto \tilde{\hat{\lambda}}_n \equiv \tilde{\lambda}_n - z\tilde{\lambda}_1
\]

\[
A_n = \hat{A}_n(z = 0) = -\int_{z \neq 0} dz \frac{\hat{A}_n(z)}{z}
\]
Tree amplitudes are entirely fixed by analyticity.

Consider the simplest deformation of any amplitude: $A_n \mapsto \hat{A}_n(z)$

(consistent with momentum conservation)

$$\lambda_1 \mapsto \hat{\lambda}_1 \equiv \lambda_1 + z\lambda_n$$

$$\tilde{\lambda}_n \mapsto \tilde{\hat{\lambda}}_n \equiv \tilde{\lambda}_n - z\tilde{\lambda}_1$$

$$A_n = \hat{A}_n(z = 0) = - \int_{z \neq 0} dz \frac{\hat{A}_n(z)}{z}$$

$$= \sum \frac{j}{(p_1 + \ldots + p_j)^2}$$

The All-Loop S-Matrix of $\mathcal{N} = 4$ Super Yang-Mills
Analytic S-Matrix Redux: Tree-Level Recursion Relations

Tree amplitudes are entirely fixed by analyticity.

Consider the simplest deformation of any amplitude: \(A_n \mapsto \hat{A}_n(z) \)

(consistent with momentum conservation)

\[
\lambda_1 \mapsto \hat{\lambda}_1 \equiv \lambda_1 + z \lambda_n \quad \tilde{\lambda}_n \mapsto \hat{\tilde{\lambda}}_n \equiv \tilde{\lambda}_n - z \tilde{\lambda}_1
\]

\[
A_n = \hat{A}_n(z = 0) = - \int_{z \neq 0} dz \frac{\hat{A}_n(z)}{z}
\]
When the Impossible Becomes Possible

The BCFW tree-level recursion relations made it extremely simple to generate theoretical ‘data’ about scattering amplitudes.

- Amplitudes are calculated with maximum efficiency
- Every term has an interpretation as a leading singularity
- Each term manifests *all* the symmetries of the theory
When the Impossible Becomes Possible

The BCFW tree-level recursion relations made it extremely simple to generate theoretical ‘data’ about scattering amplitudes.

- Amplitudes are calculated with maximum efficiency
- Every term has an interpretation as a leading singularity
- Each term manifests all the symmetries of the theory

When the Impossible Becomes Possible

The BCFW tree-level recursion relations made it extremely simple to generate theoretical ‘data’ about scattering amplitudes.

- Amplitudes are calculated with maximum efficiency
- Every term has an interpretation as a leading singularity
- Each term manifests all the symmetries of the theory
When the Impossible Becomes Possible

The BCFW tree-level recursion relations made it extremely simple to generate theoretical ‘data’ about scattering amplitudes.

- Amplitudes are calculated with maximum efficiency
- Every term has an interpretation as a leading singularity
- Each term manifests all the symmetries of the theory

\[A_6^{(3)}(+) = \frac{1 + g^2 + g^4}{s_{561} \langle 6 \mid 1 \rangle \langle 5 \mid 4 \rangle \langle 3 \mid 3 \rangle \langle 1 \mid 1 \rangle \langle 2 \mid 2 \rangle \langle 3 \mid 3 \rangle} \]

\[= (1 + g^2 + g^4) \frac{s_{561} \langle 5 \mid 6 \rangle \langle 6 \mid 1 \rangle \langle 2 \mid 3 \rangle \langle 3 \mid 4 \rangle \langle 1 \mid 1 \rangle \langle 6 \mid 5 \rangle \langle 5 \mid 4 \rangle \langle 5 \mid 6 \rangle \langle 1 \mid 2 \rangle \langle 1 \mid 1 \rangle \langle 6 \mid 5 \rangle \langle 5 \mid 4 \rangle}{s_{561} \langle 5 \mid 6 \rangle \langle 6 \mid 1 \rangle \langle 2 \mid 3 \rangle \langle 3 \mid 4 \rangle \langle 1 \mid 1 \rangle \langle 6 \mid 5 \rangle \langle 5 \mid 4 \rangle \langle 5 \mid 6 \rangle \langle 1 \mid 2 \rangle \langle 1 \mid 1 \rangle \langle 6 \mid 5 \rangle \langle 5 \mid 4 \rangle} \]

\[\langle 6 \mid (2 + 3 + 4) \rangle \langle 1 \mid (6 + 5) \rangle \langle 5 \mid (6 + 1) \rangle \]

\[e.g. \text{the alternating 6-point NMHV amplitude can be written:} \]

\[A_6^{(3)}(+) = (1 + g^2 + g^4) \frac{s_{561} \langle 5 \mid 6 \rangle \langle 6 \mid 1 \rangle \langle 2 \mid 3 \rangle \langle 3 \mid 4 \rangle \langle 1 \mid 1 \rangle \langle 6 \mid 5 \rangle \langle 5 \mid 4 \rangle \langle 5 \mid 6 \rangle \langle 1 \mid 2 \rangle \langle 1 \mid 1 \rangle \langle 6 \mid 5 \rangle \langle 5 \mid 4 \rangle}{s_{561} \langle 5 \mid 6 \rangle \langle 6 \mid 1 \rangle \langle 2 \mid 3 \rangle \langle 3 \mid 4 \rangle \langle 1 \mid 1 \rangle \langle 6 \mid 5 \rangle \langle 5 \mid 4 \rangle \langle 5 \mid 6 \rangle \langle 1 \mid 2 \rangle \langle 1 \mid 1 \rangle \langle 6 \mid 5 \rangle \langle 5 \mid 4 \rangle} \]
When the Impossible Becomes Possible

The BCFW tree-level recursion relations made it extremely simple to generate theoretical ‘data’ about scattering amplitudes.

- Amplitudes are calculated with maximum efficiency
 - but with enormous flexibility
- Every term has an interpretation as a leading singularity
- Each term manifests *all* the symmetries of the theory

e.g. the alternating 6-point NMHV amplitude can be written:

\[A_6^{(3)}(+, -, +, -, +, -) = (1+g^2+g^4) \frac{\langle 6\vert(2+3+4)\vert3\rangle^4}{s_{561} \langle 5\,6\rangle \langle 6\,1 \rangle [2\,3] [3\,4] \langle 1\vert(6+5)\vert4\rangle \langle 5\vert(6+1)\vert2\rangle} \]
When the Impossible Becomes Possible

The BCFW tree-level recursion relations made it extremely simple to generate theoretical ‘data’ about scattering amplitudes.

- Amplitudes are calculated with maximum efficiency
 - but with enormous flexibility
- Every term has an interpretation as a leading singularity
- Each term manifests all the symmetries of the theory

e.g. the alternating 6-point NMHV amplitude can be written:

\[
A^{(3)}_6(+, -, +, -, +, -) = (1 + g^2 + g^4) \frac{\langle 6 | (2 + 3 + 4) | 3 \rangle^4}{s_{561} \langle 5 6 \rangle \langle 6 1 \rangle [2 3] [3 4] \langle 1 | (6 + 5) | 4 \rangle \langle 5 | (6 + 1) | 2 \rangle}
\]

but it can **also** be written:

\[
A^{(3)}_6(+, -, +, -, +, -) = (1 + g^2 + g^4) \frac{\langle 4 6 \rangle^4 \langle 1 3 \rangle^4}{s_{456} \langle 4 5 \rangle \langle 5 6 \rangle [1 2] [2 3] \langle 4 | (5 + 6) | 1 \rangle \langle 6 | (5 + 4) | 3 \rangle}
\]
When the Impossible Becomes Possible

The BCFW tree-level recursion relations made it extremely simple to generate theoretical ‘data’ about scattering amplitudes.

- Amplitudes are calculated with maximum efficiency
- but with enormous flexibility
- Every term has an interpretation as a leading singularity

- Each term manifests all the symmetries of the theory

\[\mathcal{A}_6^{(3)}(+, -, +, -, +, -) = (1 + g^2 + g^4) \frac{\langle 6 | (2 + 3 + 4) | 3 \rangle^4}{s_{561} \langle 5 6 \rangle \langle 6 1 \rangle [2 3] [3 4] \langle 1 | (6 + 5) | 4 \rangle \langle 5 | (6 + 1) | 2 \rangle} \]

but it can also be written:

\[\mathcal{A}_6^{(3)}(+, -, +, -, +, -) = (1 + g^2 + g^4) \frac{\langle 4 6 \rangle^4 [1 3]^4}{s_{456} \langle 4 5 \rangle \langle 5 6 \rangle [1 2] [2 3] \langle 4 | (5 + 6) | 1 \rangle \langle 6 | (5 + 4) | 3 \rangle} \]

For 8-point N^2MHV, there are 74 linearly-independent 40-term identities connecting the different BCFW formulae.
When the Impossible Becomes Possible

The BCFW tree-level recursion relations made it extremely simple to generate theoretical ‘data’ about scattering amplitudes.

- Amplitudes are calculated with maximum efficiency
 - but with enormous flexibility
- Every term has an interpretation as a leading singularity
- Each term manifests all the symmetries of the theory

\[A^{(3)}_6 (+, -, +, -, +, -) = (1 + g^2 + g^4) \frac{\langle 6 | (2 + 3 + 4) | 3 \rangle^4}{s_{561} \langle 5 6 \rangle \langle 6 1 \rangle [2 3] [3 4] \langle 1 | (6 + 5) | 4 \rangle \langle 5 | (6 + 1) | 2 \rangle}\]

\text{e.g. the alternating 6-point NMHV amplitude can be written:}\
The BCFW tree-level recursion relations made it extremely simple to generate theoretical ‘data’ about scattering amplitudes.

- Amplitudes are calculated with maximum efficiency
 - but with enormous flexibility
- Every term has an interpretation as a leading singularity

- Each term manifests *all* the symmetries of the theory

e.g. the alternating 6-point NMHV amplitude can be written:

\[
\mathcal{A}^{(3)}_6 (+, -, +, -, +, -) = (1 + g^2 + g^4) \frac{\langle 6 | (2 + 3 + 4) | 3 \rangle^4}{s_{561} \langle 5 \ 6 \rangle \langle 6 \ 1 \rangle \ [2 \ 3] \ [3 \ 4] \ \langle 1 | (6 + 5) | 4 \rangle \langle 5 | (6 + 1) | 2 \rangle}
\]
The BCFW tree-level recursion relations made it extremely simple to generate theoretical ‘data’ about scattering amplitudes.

- Amplitudes are calculated with maximum efficiency
 - but with enormous flexibility
- Every term has an interpretation as a leading singularity
 - but with even more flexibility
- Each term manifests all the symmetries of the theory

e.g. the alternating 6-point NMHV amplitude can be written:

\[
\mathcal{A}^{(3)}_6(+, -, +, -, +, -) = (1 + g^2 + g^4) \frac{\langle 6 | (2 + 3 + 4) | 3 \rangle^4}{s_{561} \langle 5 \ 6 \rangle \langle 6 \ 1 \rangle \ [2 \ 3] \ [3 \ 4] \ [1 \ (6 + 5) \ 4] \ [5 \ (6 + 1) \ 2]}.
\]
The BCFW tree-level recursion relations made it extremely simple to generate theoretical ‘data’ about scattering amplitudes.

- Amplitudes are calculated with maximum efficiency
 - but with enormous flexibility
- Every term has an interpretation as a leading singularity
 - but with even more flexibility
- Each term manifests all the symmetries of the theory

\[A_6^{(3)}(+, -, +, -, +, -) = (1 + g^2 + g^4) \frac{\langle 6 | (2 + 3 + 4) | 3 \rangle^4}{s_{561} \langle 5 6 \rangle \langle 6 1 \rangle \langle 2 3 \rangle [3 4] \langle 1 | (6 + 5) | 4 \rangle \langle 5 | (6 + 1) | 2 \rangle} \]
When the Impossible Becomes Possible

The BCFW tree-level recursion relations made it extremely simple to generate theoretical ‘data’ about scattering amplitudes.

- Amplitudes are calculated with maximum efficiency
 - but with enormous flexibility
- Every term has an interpretation as a leading singularity
 - but with even more flexibility
- Each term manifests all the symmetries of the theory

e.g. the alternating 6-point NMHV amplitude can be written:

\[A_6^{(3)}(+, -, +, -, +, -) = (1+g^2+g^4) \frac{s_{561}\langle 5\,6\rangle \langle 6\,1 \rangle \langle 2\,3 \rangle \langle 3\,4 \rangle \langle 1|(6+5)|4\rangle \langle 5|(6+1)|2]}{[2\,3]\,[3\,4]} \]

![Diagram of scattering amplitudes](image-url)
When the Impossible Becomes Possible

The BCFW tree-level recursion relations made it extremely simple to generate theoretical ‘data’ about scattering amplitudes.

- Amplitudes are calculated with maximum efficiency
 - but with enormous flexibility
- Every term has an interpretation as a leading singularity
 - but with even more flexibility
- Each term manifests all the symmetries of the theory
 - including those only recently discovered

E.g., the alternating 6-point NMHV amplitude can be written:

\[
A_6^{(3)}(+, -, +, -, +, -) = (1+g^2+g^4) \frac{s_{561} \langle 6 \mid (2 + 3 + 4) \mid 3 \rangle^4}{\langle 6 \mid (5 6) \langle 6 \mid 1 \rangle \langle 2 \mid 3 \rangle [3 \mid 4 \rangle \langle 1 \mid (5 + 6) \rangle \langle 4 \mid (5 + 1) \rangle \langle 2 \mid}
\]
Although spinor-helicity variables trivialize the on-shell condition, momentum conservation remains a non-trivial constraint.
Although spinor-helicity variables trivialize the on-shell condition, momentum conservation remains a non-trivial constraint.
Although spinor-helicity variables trivialize the on-shell condition, momentum conservation remains a non-trivial constraint.

Solution: *dual-coordinate x-space.*

- $p_a \equiv x_{a+1} - x_a$
- scattering amplitudes turn out to be superconformal invariant with respect to these dual-coordinates!
- combined with the ordinary-space superconformal invariance, scattering amplitudes are invariant under an infinite-dimensional Yangian symmetry.
Although spinor-helicity variables trivialize the on-shell condition, momentum conservation remains a non-trivial constraint.

Solution: dual-coordinate x-space.

- $p_a \equiv x_{a+1} - x_a$

- Scattering amplitudes turn out to be superconformal invariant with respect to these dual-coordinates!
- Combined with the ordinary-space superconformal invariance, scattering amplitudes are invariant under an infinite-dimensional Yangian symmetry.
Although spinor-helicity variables trivialize the on-shell condition, momentum conservation remains a non-trivial constraint.

Solution: dual-coordinate x-space.

- $p_a \equiv x_{a+1} - x_a$

- scattering amplitudes turn out to be superconformal invariant with respect to these dual-coordinates!

- combined with the ordinary-space superconformal invariance, scattering amplitudes are invariant under an infinite-dimensional Yangian symmetry.
Although spinor-helicity variables trivialize the on-shell condition, momentum conservation remains a non-trivial constraint.

Solution: dual-coordinate x-space.

- $p_a \equiv x_{a+1} - x_a$
- scattering amplitudes turn out to be superconformal invariant with respect to these dual-coordinates!
- combined with the ordinary-space superconformal invariance, scattering amplitudes are invariant under an infinite-dimensional Yangian symmetry.
Dual-Coordinate Space and Momentum Twistor Geometry

Although spinor-helicity variables trivialize the on-shell condition, momentum conservation remains a non-trivial constraint.

Solution: dual-coordinate x-space.

- $p_a \equiv x_{a+1} - x_a$
- scattering amplitudes turn out to be superconformal invariant with respect to these dual-coordinates!
- combined with the ordinary-space superconformal invariance, scattering amplitudes are invariant under an infinite-dimensional Yangian symmetry.
Although spinor-helicity variables trivialize the on-shell condition, momentum conservation remains a non-trivial constraint.

Solution: dual-coordinate x-space.

- Andrew Hodges: to make superconformal invariance manifest, use the twistor space associated with dual coordinates: momentum twistor space.
- $\langle a \ b \ c \ d \rangle \equiv \det (Z_a \ Z_b \ Z_c \ Z_d) = 0 \iff$ the twistors Z_a, Z_b, Z_c, Z_d are linearly dependent.
- So, $(p_a + \ldots + p_b)^2 = 0 \iff \langle a-1 a b b+1 \rangle = 0$.

![Hexagon diagram with momenta and variables]
Although spinor-helicity variables trivialize the on-shell condition, momentum conservation remains a non-trivial constraint.

Solution: dual-coordinate x-space.

- Andrew Hodges: to make superconformal invariance manifest, use the twistor space associated with dual coordinates: momentum twistor space.
- $\langle a\ b\ c\ d\rangle \equiv \det (Z_a Z_b Z_c Z_d) = 0 \iff$ the twistors Z_a, Z_b, Z_c, Z_d are linearly dependent.
- So, $(p_a + \ldots + p_b)^2 = 0 \iff \langle a-1\ a\ b\ b+1\rangle = 0.$
Although spinor-helicity variables trivialize the on-shell condition, momentum conservation remains a non-trivial constraint.

Solution: dual-coordinate x-space.

- Andrew Hodges: to make superconformal invariance manifest, use the twistor space associated with dual coordinates: momentum twistor space.
 \[\langle a\ b\ c\ d \rangle \equiv \det (Z_a\ Z_b\ Z_c\ Z_d) = 0 \iff \text{the twistors}\ Z_a,\ Z_b,\ Z_c,\ Z_d \text{are linearly dependent.} \]
 \[\text{So, } (p_a + \ldots + p_b)^2 = 0 \iff \langle a-1\ a\ b\ b+1 \rangle = 0. \]
Dual-Coordinate Space and Momentum Twistor Geometry

Although spinor-helicity variables trivialize the on-shell condition, momentum conservation remains a non-trivial constraint.

Solution: dual-coordinate x-space.

- Andrew Hodges: to make superconformal invariance manifest, use the twistor space associated with dual coordinates: momentum twistor space.

\[
\langle a \ b \ c \ d \rangle \equiv \det (Z_a \ Z_b \ Z_c \ Z_d) = 0 \iff \text{the twistors } Z_a, Z_b, Z_c, Z_d \text{ are linearly dependent.}
\]

- So, \((p_a + \ldots + p_b)^2 = 0 \iff \langle a-1 \ a \ b \ b+1 \rangle = 0.\]
Dual-Coordinate Space and Momentum Twistor Geometry

Although spinor-helicity variables trivialize the on-shell condition, momentum conservation remains a non-trivial constraint.

Solution: dual-coordinate x-space.

- Andrew Hodges: to make superconformal invariance manifest, use the twistor space associated with dual coordinates: momentum twistor space.
- $\langle a\ b\ c\ d \rangle \equiv \det (Z_a\ Z_b\ Z_c\ Z_d) = 0 \iff$ the twistors Z_a, Z_b, Z_c, Z_d are linearly dependent.
- So, $(p_a + \ldots + p_b)^2 = 0 \iff \langle a-1\ a\ b\ b+1 \rangle = 0.$
Dual-Coordinate Space and Momentum Twistor Geometry

Although spinor-helicity variables trivialize the on-shell condition, momentum conservation remains a non-trivial constraint.

Solution: dual-coordinate \(x \)-space.

- Andrew Hodges: to make superconformal invariance manifest, use the twistor space associated with dual coordinates: momentum twistor space.
- \(\langle a \ b \ c \ d \rangle \equiv \det (Z_a \ Z_b \ Z_c \ Z_d) = 0 \iff \text{the twistors } Z_a, Z_b, Z_c, Z_d \text{ are linearly dependent.} \\
- So, \((p_a + \ldots + p_b)^2 = 0 \iff \langle a-1 \ a \ b \ b+1 \rangle = 0. \)
Because in momentum-twistor variables momentum conservation is automatic, the ‘naïve’ analytic continuation works: $Z_n \mapsto Z_n + zZ_{n-1}$.

Contributions arise from factorization channels: $\langle \hat{n} 1 j j + 1 \rangle = 0$
Because in momentum-twistor variables momentum conservation is automatic, the ‘naïve’ analytic continuation works: $Z_n \mapsto Z_n + zZ_{n-1}$.

- Contributions arise from factorization channels: $\langle \hat{n} 1 j j+1 \rangle = 0$
Because in momentum-twistor variables momentum conservation is automatic, the ‘naïeve’ analytic continuation works: \(Z_n \mapsto Z_n + z Z_{n-1} \).

- Contributions arise from factorization channels: \(\langle \hat{n} 1 j j+1 \rangle = 0 \)

\[
\mathcal{A}_n^{(m)} = \sum_{\text{partitions of } n,m} \mathcal{A}_{n_L}^{(m_L)}(1, \ldots, j, \hat{J}) \otimes \mathcal{A}_{n_R}^{(m_R)}(\hat{J}, j+1, \ldots, n-1, \hat{n})
\]
Because in momentum-twistor variables momentum conservation is automatic, the ‘naïve’ analytic continuation works: \(Z_n \mapsto Z_n + zZ_{n-1} \).

- Contributions arise from factorization channels: \(\langle \hat{n} \, 1 \, j \, j+1 \rangle = 0 \)

\[
A_n^{(m)} = \sum_{\text{partitions of } n,m} A^{(m_L)}_{n_L}(1, \ldots, j, \hat{J}) \bigotimes BCFW A^{(m_R)}_{n_R}(\hat{J}, j + 1, \ldots, n - 1, \hat{n})
\]

\(\hat{J} \equiv (j, j+1) \cap (n-1 \, n \, 1) \) and \(\hat{n} \equiv (n, n-1) \cap (j, j+1, 1) \)

\[\begin{align*}
1 & \quad n \\
\sum_{j} & \quad \bigotimes BCFW
\end{align*}\]
Because in momentum-twistor variables momentum conservation is automatic, the ‘naïve’ analytic continuation works: $Z_n \mapsto Z_n + zZ_{n-1}$.

Contributions arise from factorization channels: $\langle \hat{n} 1 j j+1 \rangle = 0$

$$A_n^{(m)} = \sum_{\text{partitions of } n,m} A_{n_L}^{(m_L)}(1, \ldots, j, \hat{J}) \otimes A_{n_R}^{(m_R)}(\hat{J}, j + 1, \ldots, n - 1, \hat{n})$$

\[
\hat{J} \equiv (j, j+1) \cap (n-1, n, 1) \quad \text{and} \quad \hat{n} \equiv (n, n-1) \cap (j, j+1, 1)
\]
Because in momentum-twistor variables momentum conservation is automatic, the ‘naïeve’ analytic continuation works: \(Z_n \mapsto Z_n + zZ_{n-1} \).

- Contributions arise from factorization channels: \(\langle \hat{n} 1 j j+1 \rangle = 0 \)

\[
A_n^{(m)} = \sum_{\text{partitions of } n, m} A_{n_L}^{(m_L)}(1, \ldots, j, \hat{J}) \otimes A_{n_R}^{(m_R)}(\hat{J}, j + 1, \ldots, n - 1, \hat{n})
\]

\(\hat{J} \equiv (j, j+1) \cap (n-1 \ n \ 1) \) and \(\hat{n} \equiv (n \ n-1) \cap (j \ j+1 \ 1) \)

\[
\begin{array}{c}
\text{n - 1} \\
\bullet \\
\text{n} \\
\bullet \\
\text{j + 1} \\
\bullet \\
\text{1} \\
\bullet \\
\text{j} \\
\bullet
\end{array}
\]
Because in momentum-twistor variables momentum conservation is automatic, the ‘naïve’ analytic continuation works: \(Z_n \mapsto Z_n + zZ_{n-1} \).

- Contributions arise from factorization channels: \(\langle \hat{n} \ 1 \ j \ j+1 \rangle = 0 \)

\[
\mathcal{A}_n^{(m)} = \sum_{\text{partitions of } n, m} \mathcal{A}_{n_L}^{(m_L)}(1, \ldots, j, \hat{J}) \otimes \mathcal{A}_{n_R}^{(m_R)}(\hat{J}, j+1, \ldots, n-1, \hat{n})
\]

\(\hat{J} \equiv (j \ j+1) \cap (n-1 \ n \ 1) \) and \(\hat{n} \equiv (n \ n-1) \cap (j \ j+1 \ 1) \)
Because in momentum-twistor variables momentum conservation is automatic, the ‘naïve’ analytic continuation works: $Z_n \mapsto Z_n + z Z_{n-1}$.

- Contributions arise from factorization channels: $\langle \hat{n} \ 1 \ j \ j+1 \rangle = 0$

$$A_n^{(m)} = \sum_{\text{partitions of } n,m} A_{n_L}^{(m_L)}(1, \ldots, j, \hat{J}) \bigotimes A_{n_R}^{(m_R)}(\hat{J}, j + 1, \ldots, n - 1, \hat{n})$$

$\hat{J} \equiv (j, j+1) \cap (n-1 \ n \ 1)$ and $\hat{n} \equiv (n \ n-1) \cap (j \ j+1 \ 1)$

Tree-Level BCFW in Momentum-Twistor Variables
Tree-Level BCFW in Momentum-Twistor Variables

Because in momentum-twistor variables momentum conservation is automatic, the ‘naïve’ analytic continuation works: $Z_n \mapsto Z_n + zZ_{n-1}$.

- Contributions arise from factorization channels: $\langle \hat{n} \, 1 \, j \, j+1 \rangle = 0$

$$A_n^{(m)} = \sum_{\text{partitions of } n,m} A_{nL}^{(mL)}(1, \ldots, j, \hat{J}) \otimes BCFW A_{nR}^{(mR)}(\hat{J}, j+1, \ldots, n-1, \hat{n})$$

$\hat{J} \equiv (j \, j+1) \cap (n-1 \, n \, 1)$ and $\hat{n} \equiv (n \, n-1) \cap (j \, j+1 \, 1)$.
Because in momentum-twistor variables momentum conservation is automatic, the ‘naïeve’ analytic continuation works: $Z_n \mapsto Z_n + zZ_{n-1}$.

Contributions arise from factorization channels: $\langle \hat{n} 1 j j+1 \rangle = 0$

$$\mathcal{A}^{(m)}_n = \sum_{\text{partitions of } n,m} \mathcal{A}^{(m_L)}_{n_L}(1, \ldots, j, \hat{J}) \bigotimes \mathcal{A}^{(m_R)}_{n_R}(\hat{J}, j+1, \ldots, n-1, \hat{n})$$

$\hat{J} \equiv (j j+1) \cap (n-1 n 1)$ and $\hat{n} \equiv (n n-1) \cap (j j+1 1)$
Because in momentum-twistor variables momentum conservation is automatic, the ‘naïve’ analytic continuation works:

\[Z_n \mapsto Z_n + zZ_{n-1}. \]

- Contributions arise from factorization channels:

\[\langle \hat{n} \, 1 \, j \, j+1 \rangle = 0 \]

\[A_n^{(m)} = \sum_{\text{partitions of } n, m} A_{n_L}^{(m_L)}(1, \ldots, j, \hat{J}) \otimes A_{n_R}^{(m_R)}(\hat{J}, j + 1, \ldots, n - 1, \hat{n}) \]

The Most Useful Identity in Projective Geometry:

\[Z_a\langle b \, c \, d \, e \rangle + Z_b\langle c \, d \, e \, a \rangle + Z_c\langle d \, e \, a \, b \rangle + Z_d\langle e \, a \, b \, c \rangle + Z_e\langle a \, b \, c \, d \rangle = 0. \]
Because in momentum-twistor variables momentum conservation is automatic, the ‘naïeve’ analytic continuation works: $Z_n \mapsto Z_n + zZ_{n-1}$.

- Contributions arise from factorization channels: $\langle \hat{n} \ 1 \ j \ j+1 \rangle = 0$

$$A_{n}^{(m)} = \sum_{\text{partitions of } n,m} A_{n_{L}}^{(m_{L})}(1, \ldots, j, \hat{J}) \otimes A_{n_{R}}^{(m_{R})}(\hat{J}, j + 1, \ldots, n - 1, \hat{n})$$

The Most Useful Identity in Projective Geometry:

$$-Z_{a}\langle b \ c \ d \ e \rangle = Z_{b}\langle c \ d \ e \ a \rangle + Z_{c}\langle d \ e \ a \ b \rangle + Z_{d}\langle e \ a \ b \ c \rangle + Z_{e}\langle a \ b \ c \ d \rangle$$
Because in momentum-twistor variables momentum conservation is automatic, the ‘naïve’ analytic continuation works: \(Z_{\hat{n}} \mapsto Z_{\hat{n}} + zZ_{n-1} \).

- Contributions arise from factorization channels: \(\langle \hat{n} 1 j j+1 \rangle = 0 \)

\[
A^{(m)}_n = \sum_{\text{partitions of } n,m} A^{(m_L)}_{n_L}(1, \ldots, j, \hat{J}) \bigotimes_{\text{BCFW}} A^{(m_R)}_{n_R}(\hat{J}, j + 1, \ldots, n - 1, \hat{n})
\]

\(\hat{J} \equiv (j j+1) \cap (n-1 n 1) \) and \(\hat{n} \equiv (n n-1) \cap (j j+1 1) \)

The Most Useful Identity in Projective Geometry:

\[
-Z_a\langle b c d e \rangle - Z_b\langle c d e a \rangle = Z_c\langle d e a b \rangle + Z_d\langle e a b c \rangle + Z_e\langle a b c d \rangle
\]
Because in momentum-twistor variables momentum conservation is automatic, the 'naïve' analytic continuation works: $Z_n \mapsto Z_n + zZ_{n-1}$.

- Contributions arise from factorization channels: $\langle \hat{n} \, 1 \, j \, j+1 \rangle = 0$

$$A^{(m)}_n = \sum_{\text{partitions of } n,m} A^{(m_L)}_{n_L}(1, \ldots, j, \hat{J}) \bigotimes_{\text{BCFW}} A^{(m_R)}_{n_R}(\hat{J}, j+1, \ldots, n-1, \hat{n})$$

The Most Useful Identity in Projective Geometry:

$$\hat{J} \equiv (j \, j+1) \cap (n-1 \, n \, 1) = Z_j \langle j+1 \, n-1 \, n \, 1 \rangle + Z_{j+1} \langle n-1 \, n \, 1 \, j \rangle$$
Because in momentum-twistor variables momentum conservation is automatic, the ‘naive’ analytic continuation works: $Z_n \mapsto Z_n + zZ_{n-1}$.

- Contributions arise from factorization channels: $\langle \hat{n} \, 1 \, j \, j+1 \rangle = 0$

$$A_n^{(m)} = \sum_{\text{partitions of } n,m} A_{n_L}^{(m_L)}(1, \ldots, j, \hat{J}) \bigotimes_{\text{BCFW}} A_{n_R}^{(m_R)}(\hat{J}, j + 1, \ldots, n - 1, \hat{n})$$

The Most Useful Identity in Projective Geometry:

$$\hat{n} \equiv (n \, n-1) \cap (j \, j+1 \, 1) = Z_n \langle n-1 \, j \, j+1 \, 1 \rangle + Z_{n-1} \langle j \, j+1 \, 1 \, n \rangle$$
The Meaning of *The* Loop Integrand

In a general theory, there is no naturally well-defined way to combine disparate Feynman loop integrals:

\[
\begin{align*}
&\quad = \left\{ \int d^4 \ell_1 \frac{(p_1 + p_2)^2(p_2 + p_3)^2}{\ell_1^2(\ell_1 - p_1)^2(\ell_1 - p_1 - p_2)^2(\ell_1 + p_4)^2}, \\
&\quad \int d^4 \ell_2 \frac{(p_1 + p_2)^2(p_2 + p_3)^2}{\ell_2^2(\ell_2 - p_2)^2(\ell_2 - p_1 - p_2)^2(\ell_2 + p_4)^2} \right\}
\end{align*}
\]
The Meaning of *The* Loop Integrand

In a general theory, there is no naturally well-defined way to combine disparate Feynman loop integrals:

At least for planar theories, the loop-integrand is unambiguous.

\[
\frac{(p_1 + p_2)^2(p_2 + p_3)^2}{\ell_1^2(\ell_1 - p_1)^2(\ell_1 - p_1 - p_2)^2(\ell_1 + p_4)^2}
\]

\[
\frac{(p_1 + p_2)^2(p_2 + p_3)^2}{\ell_2^2(\ell_2 - p_2)^2(\ell_2 - p_1 - p_2)^2(\ell_2 + p_4)^2}
\]
The Meaning of *The* Loop Integrand

In a general theory, there is no naturally well-defined way to combine disparate Feynman loop integrals:

At least for planar theories, *the loop-integrand* is unambiguous.

\[
\begin{align*}
L &= \int d^4 L rac{(p_1 + p_2)^2 (p_2 + p_3)^2}{L^2 (L - p_1)^2 (L - p_1 - p_2)^2 (L + p_4)^2}
\end{align*}
\]
The Meaning of *The* Loop Integrand

In a general theory, there is no naturally well-defined way to combine disparate Feynman loop integrals:

At least for planar theories, the *loop-integrand* is unambiguous.

\[
= \int d^4 L \frac{(p_1 + p_2)^2(p_2 + p_3)^2}{L^2(L - p_1)^2(L - p_1 - p_2)^2(L + p_4)^2}
\]

In dual coordinates, we find

\[
= \int d^4 x \frac{(x_1 - x_3)^2(x_2 - x_4)^2}{(x - x_1)^2(x - x_2)^2(x - x_3)^2(x - x_4)^2}
\]
Integrals over Lines in Momentum-Twistor Space

Integration over all x corresponds to the integration over all lines $(Z_A Z_B)$ in momentum-twistor space.

$$\int d^4 x \iff \int \frac{d^4 Z_A d^4 Z_B}{\text{vol}(GL_2) \times \langle \lambda_A \lambda_B \rangle^4} \equiv \int_{AB}$$

The propagators are

$$(x - x_1)^2 \iff \langle AB \ 12 \rangle \quad (x - x_2)^2 \iff \langle AB \ 23 \rangle \quad \text{etc.}$$

and the integral becomes

$$\int_{AB} \frac{\langle 12 \ 34 \rangle^2}{\langle AB \ 12 \rangle \langle AB \ 23 \rangle \langle AB \ 34 \rangle \langle AB \ 41 \rangle}$$
The Origin of Loop Amplitudes: Forward Limits

Let us reconsider the BCFW deformation for momentum-twistors:

\[Z_n \mapsto Z_n + z Z_{n-1}. \]

- The ordinary terms come from factorizations: \(\langle \hat{n} 1 j j+1 \rangle = 0. \)
- The new terms come from cutting a propagator: \(\langle AB \hat{n} 1 \rangle = 0. \)
The Origin of Loop Amplitudes: Forward Limits

Let us reconsider the BCFW deformation for momentum-twistors:

\[Z_n \mapsto Z_n + z Z_{n-1}. \]

- The ordinary terms come from factorizations: \(\langle \hat{n} \, 1 \, j \, j+1 \rangle = 0. \)
- The new terms come from cutting a propagator: \(\langle AB \, \hat{n} \, 1 \rangle = 0. \)
The Origin of Loop Amplitudes: Forward Limits

Let us reconsider the BCFW deformation for momentum-twistors:

\[Z_n \mapsto Z_n + z Z_{n-1}. \]

- The ordinary terms come from factorizations: \(\langle \hat{n} 1 j j + 1 \rangle = 0 \).
- The new terms come from cutting a propagator: \(\langle AB \hat{n} 1 \rangle = 0 \).

\[
A_{n,\ell}^{(m)} = \sum_{\text{partitions of } n,m,\ell} A_{n_L,\ell_L}^{(m_L)} (1, \ldots, j, J) \bigotimes_{\text{BCFW}} A_{n_R,\ell_R}^{(m_R)} (J, j + 1, \ldots, n - 1, \hat{n})
\]

\[
\hat{J} \equiv (j j + 1) \cap (n - 1 n 1) \\
\hat{n} \equiv (n n - 1) \cap (j j + 1 1)
\]
The Origin of Loop Amplitudes: Forward Limits

Let us reconsider the BCFW deformation for momentum-twistors:

\[Z_n \mapsto Z_n + z Z_{n-1}. \]

- The ordinary terms come from factorizations: \(\langle \hat{n} \, 1 \, j \, j+1 \rangle = 0 \).
- The new terms come from cutting a propagator: \(\langle AB \, \hat{n} \, 1 \rangle = 0 \).

\[
A^{(m)}_{n,\ell} = \sum_{\text{partitions of } n, m, \ell} A^{(m_L)}_{n_L,\ell_L} (1, \ldots, j, \hat{J}) \otimes A^{(m_R)}_{n_R,\ell_R} (\hat{J}, j + 1, \ldots, n - 1, \hat{n})
\]

\[
\hat{J} \equiv (j + 1) \cap (n - 1 \, n \, 1) \quad \hat{n} \equiv (n - 1) \cap (j \, j + 1 \, 1)
\]
The Origin of Loop Amplitudes: Forward Limits

Let us reconsider the BCFW deformation for momentum-twistors:

\[Z_n \mapsto Z_n + zZ_{n-1}. \]

- The ordinary terms come from factorizations: \(\langle \hat{n} \ 1 \ j \ j+1 \rangle = 0. \)
- The new terms come from cutting a propagator: \(\langle AB \ \hat{n} \ 1 \rangle = 0. \)

\[
A^{(m)}_{n,\ell} = \sum_{\text{partitions of } n, m, \ell} A^{(m_L)}_{n_L,\ell_L}(1, \ldots, j, \hat{J}) \bigotimes_{\text{BCFW}} A^{(m_R)}_{n_R,\ell_R}(\hat{J}, j + 1, \ldots, n - 1, \hat{n})
\]

\[
\hat{J} \equiv (j \ j+1) \cap (n-1 \ n \ 1)
\]

\[
\hat{n} \equiv (n \ n-1) \cap (j \ j+1 \ 1)
\]
The Origin of Loop Amplitudes: Forward Limits

Let us reconsider the BCFW deformation for momentum-twistors:

\[Z_n \mapsto Z_n + zZ_{n-1}. \]

- The ordinary terms come from factorizations: \(\langle \hat{n} \, 1 \, j \, j+1 \rangle = 0. \)
- The new terms come from cutting a propagator: \(\langle AB \, \hat{n} \, 1 \rangle = 0. \)

\[
A_{n, \ell}^{(m)} = \sum_{\text{partitions of } n, m, \ell} A_{n_L, \ell_L}^{(m_L)} (1, \ldots, j, \hat{J}) \bigotimes_{\text{BCFW}} A_{n_R, \ell_R}^{(m_R)} (\hat{J}, j+1, \ldots, n-1, \hat{n})
\]

\[
= \sum_j \text{BCFW}
\]

The All-Loop S-Matrix of \(\mathcal{N} = 4 \) Super Yang-Mills
In $\mathcal{N} = 4$ these forward limits are always well-defined and finite

- the same has been proven for up to two-loops in any supersymmetric theory

There is evidence that there exists a ‘smart forward limit’ that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).
In $\mathcal{N} = 4$ these forward limits are always well-defined and finite
- the same has been proven for up to two-loops in any supersymmetric theory

There is evidence that there exists a ‘smart forward limit’ that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).
In $\mathcal{N} = 4$ these forward limits are always well-defined and finite.

- the same has been proven for up to two-loops in any supersymmetric theory

- There is evidence that there exists a ‘smart forward limit’ that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).
The Geometry of Forward Limits

- In $\mathcal{N} = 4$ these forward limits are always well-defined and finite
 - the same has been proven for up to two-loops in any supersymmetric theory
- There is evidence that there exists a ‘smart forward limit’ that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).

Caron – Huot
arXiv:1007.3224
The Geometry of Forward Limits

- In $\mathcal{N} = 4$ these forward limits are always well-defined and finite
 - the same has been proven for up to two-loops in any supersymmetric theory

- There is evidence that there exists a ‘smart forward limit’ that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).

Caron - Huot
arXiv:1007.3224
In $\mathcal{N} = 4$ these forward limits are always well-defined and finite
- the same has been proven for up to two-loops in any supersymmetric theory
- There is evidence that there exists a ‘smart forward limit’ that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).
The Geometry of Forward Limits

- In $\mathcal{N} = 4$ these forward limits are always well-defined and finite
 - the same has been proven for up to two-loops in any supersymmetric theory

- There is evidence that there exists a ‘smart forward limit’ that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).
In $\mathcal{N} = 4$ these forward limits are always well-defined and finite
- the same has been proven for up to two-loops in any supersymmetric theory
- There is evidence that there exists a ‘smart forward limit’ that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).

The All-Loop S-Matrix of $\mathcal{N} = 4$ Super Yang-Mills
In $\mathcal{N} = 4$ these forward limits are always well-defined and finite.

- the same has been proven for up to two-loops in any
 supersymmetric theory

There is evidence that there exists a ‘smart forward limit’ that is
always finite and well-defined in any planar theory, extending the
all-loop recursion to even pure-glue (in the planar limit).

Caron – Huot
arXiv:1007.3224
In $\mathcal{N} = 4$ these forward limits are always well-defined and finite
- the same has been proven for up to two-loops in any supersymmetric theory
- There is evidence that there exists a ‘smart forward limit’ that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).

[Caron – Huot arXiv :1007.3224]
In $\mathcal{N} = 4$ these forward limits are always well-defined and finite
- the same has been proven for up to two-loops in any supersymmetric theory
- There is evidence that there exists a ‘smart forward limit’ that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).

The Geometry of Forward Limits
The Geometry of Forward Limits

- In $\mathcal{N} = 4$ these forward limits are always well-defined and finite.
 - the same has been proven for up to two-loops in any supersymmetric theory [Caron–Huot arXiv:1007.3224].

- There is evidence that there exists a ‘smart forward limit’ that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).
The Geometry of Forward Limits

- In $\mathcal{N} = 4$ these forward limits are always well-defined and finite
 - the same has been proven for up to two-loops in any supersymmetric theory
- There is evidence that there exists a ‘smart forward limit’ that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).

In $\mathcal{N} = 4$ these forward limits are always well-defined and finite

- the same has been proven for up to two-loops in any supersymmetric theory
- There is evidence that there exists a ‘smart forward limit’ that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).
In $\mathcal{N} = 4$ these forward limits are always well-defined and finite.

- The same has been proven for up to two-loops in any supersymmetric theory.
- There is evidence that there exists a ‘smart forward limit’ that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).
In $\mathcal{N} = 4$ these forward limits are always well-defined and finite.

- the same has been proven for up to two-loops in any supersymmetric theory

There is evidence that there exists a ‘smart forward limit’ that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).
The Geometry of Forward Limits

- In $\mathcal{N} = 4$ these forward limits are always well-defined and finite
 - the same has been proven for up to two-loops in any supersymmetric theory
- There is evidence that there exists a ‘smart forward limit’ that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).

[Caron – Huot arXiv:1007.3224]
The Geometry of Forward Limits

- In $\mathcal{N} = 4$ these forward limits are always well-defined and finite
 - the same has been proven for up to two-loops in any supersymmetric theory

- There is evidence that there exists a ‘smart forward limit’ that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).

In $\mathcal{N} = 4$ these forward limits are always well-defined and finite. The same has been proven for up to two-loops in any supersymmetric theory. There is evidence that there exists a ‘smart forward limit’ that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).
In $\mathcal{N} = 4$ these forward limits are always well-defined and finite
- the same has been proven for up to two-loops in any supersymmetric theory
- There is evidence that there exists a ‘smart forward limit’ that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).
In $\mathcal{N} = 4$ these forward limits are always well-defined and finite
the same has been proven for up to two-loops in any
supersymmetric theory

There is evidence that there exists a ‘smart forward limit’ that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).
In $\mathcal{N} = 4$ these forward limits are always well-defined and finite:
- the same has been proven for up to two-loops in any supersymmetric theory
- There is evidence that there exists a ‘smart forward limit’ that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).
The Geometry of Forward Limits

- In $\mathcal{N} = 4$ these forward limits are always well-defined and finite
 - the same has been proven for up to two-loops in any supersymmetric theory
- There is evidence that there exists a ‘smart forward limit’ that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).

\[\text{Caron – Huot} \quad \text{arXiv:1007.3224}\]
In $\mathcal{N} = 4$ these forward limits are always well-defined and finite

- the same has been proven for up to two-loops in any supersymmetric theory

There is evidence that there exists a ‘smart forward limit’ that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).
The Geometry of Forward Limits

- In $\mathcal{N} = 4$ these forward limits are always well-defined and finite.
 - the same has been proven for up to two-loops in any supersymmetric theory

There is evidence that there exists a ‘smart forward limit’ that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).

Caron – Huot
arXiv:1007.3224
In $\mathcal{N} = 4$ these forward limits are always well-defined and finite
- the same has been proven for up to two-loops in any supersymmetric theory

There is evidence that there exists a ‘smart forward limit’ that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).

[Caron – Huot arXiv:1007.3224]
In $\mathcal{N} = 4$ these forward limits are always well-defined and finite
- the same has been proven for up to two-loops in any supersymmetric theory
- There is evidence that there exists a ‘smart forward limit’ that is always finite and well-defined in any planar theory, extending the all-loop recursion to even pure-glue (in the planar limit).
Exempli Gratia: BCFW Form of MHV Loop Amplitudes

Taking the forward limit of an \((n+2)\)-point NMHV tree amplitude we find the following expression for the one-loop MHV amplitude:

\[
\sum_{i<j} \int \frac{\langle AB (1 i i+1) \cap (1 j j+1) \rangle}{\langle AB 1 i \rangle \langle AB i i+1 \rangle \langle AB i+1 1 \rangle \langle AB 1 j \rangle \langle AB j j+1 \rangle \langle AB j+1 1 \rangle}
\]
Sewing Together Tree Amplitudes in $\mathcal{N} = 4$
Sewing Together Tree Amplitudes in $\mathcal{N} = 4$

Two-Mass-Easy Schubert Problem
Sewing Together Tree Amplitudes in $\mathcal{N} = 4$

Two-Mass-Easy Schubert Problem

\[
\begin{array}{c}
\begin{array}{c}
2 \quad 3 \\
\text{ } \\\\downarrow \\
4 \\
\text{ } \\\\uparrow \\
1 \quad 5 \\
\end{array}
\end{array}
\rightleftharpoons
\int_{AB} \frac{\langle 123 \ 5 \rangle \langle 2 \ 345 \rangle}{\langle AB \ 12 \rangle \langle AB \ 23 \rangle \langle AB \ 45 \rangle \langle AB \ 56 \rangle},
\]

\[
\begin{array}{c}
\begin{array}{c}
\mathcal{A}_1^{m_1} \\
\text{ } \\\\downarrow \\
\mathcal{A}_2^{m_2} \\
\text{ } \\\\uparrow \\
\mathcal{A}_4^{m_4} \\
\text{ } \\\\downarrow \\
\mathcal{A}_3^{m_3} \\
\end{array}
\end{array}
\]
Sewing Together Tree Amplitudes in $\mathcal{N} = 4$

Two-Mass-Easy Schubert Problem

$$
\frac{\langle 123 \, 5 \rangle \langle 2 \, 345 \rangle}{\langle AB \, 12 \rangle \langle AB \, 23 \rangle \langle AB \, 45 \rangle \langle AB \, 56 \rangle}
$$

$$(AB) = (25)$$

$$(AB) = (123) \cap (456)$$
Finite Integrals in Momentum Twistor Space

\[\int_{A,B} \frac{\langle AB(j-1 \ j \ j+1) \cap (k-1 \ k \ k+1) \rangle \langle 1 \ 2 \ j \ k \rangle}{\langle AB \ 12 \rangle \langle AB \ j-1 \ j \rangle \langle AB \ j \ j+1 \rangle \langle AB \ k-1 \ k \rangle \langle AB \ k \ k+1 \rangle} \]

The All-Loop S-Matrix of $\mathcal{N} = 4$ Super Yang-Mills
Finite Integrals in Momentum Twistor Space

\[\int \frac{\langle AB(j-1,j,j+1) \cap (k-1,k,k+1) \rangle \langle 1,2,j,k \rangle}{\langle AB,1,2 \rangle \langle AB,j-1,j \rangle \langle AB,j,j+1 \rangle \langle AB,k-1,k \rangle \langle AB,k,k+1 \rangle} = \text{Li}_2(1 - u_1) \]

\[u_1 \equiv \frac{\langle k,k+1,1,2 \rangle \langle j-1,j,k-1,k \rangle}{\langle k,k+1,j-1,j \rangle \langle 1,2,k-1,k \rangle} \]
Finite Integrals in Momentum Twistor Space

\[
\int_{AB} \frac{\langle AB(j-1 \, j \, j+1) \cap (k-1 \, k \, k+1) \rangle \langle 1 \, 2 \, j \, k \rangle}{\langle AB \, 1 \, 2 \rangle \langle AB \, j-1 \, j \rangle \langle AB \, j \, j+1 \rangle \langle AB \, k-1 \, k \rangle \langle AB \, k \, k+1 \rangle} = \text{Li}_2(1 - u_1) + \text{Li}_2(1 - u_2)
\]

\[
u_1 \equiv \frac{\langle k \, k+1 \, 1 \, 2 \rangle \langle j-1 \, j \, k-1 \, k \rangle}{\langle k \, k+1 \, j-1 \, j \rangle \langle 1 \, 2 \, k-1 \, k \rangle}
\]

\[
u_2 \equiv \frac{\langle j \, j+1 \, k \, k+1 \rangle \langle 1 \, 2 \, j-1 \, j \rangle}{\langle j \, j+1 \, 1 \, 2 \rangle \langle k \, k+1 \, j-1 \, j \rangle}
\]
Finite Integrals in Momentum Twistor Space

\[
\int_{AB} \frac{\langle AB(j-1\ j\ j+1) \cap (k-1\ k\ k+1) \rangle \langle 1\ 2\ j\ k \rangle}{\langle AB\ 12 \rangle \langle AB\ j-1\ j \rangle \langle AB\ j\ j+1 \rangle \langle AB\ k-1\ k \rangle \langle AB\ k\ k+1 \rangle} = \text{Li}_2(1 - u_1) + \text{Li}_2(1 - u_2) - \text{Li}_2(1 - u_3)
\]

\[u_1 \equiv \frac{\langle k\ k+1\ 1\ 2 \rangle \langle j-1\ j\ k-1\ k \rangle}{\langle k\ k+1\ j-1\ j \rangle \langle 1\ 2\ k-1\ k \rangle}\]

\[u_2 \equiv \frac{\langle j\ j+1\ k\ k+1 \rangle \langle 1\ 2\ j-1\ j \rangle}{\langle j\ j+1\ 1\ 2 \rangle \langle k\ k+1\ j-1\ j \rangle}\]

\[u_3 \equiv \frac{\langle k\ k+1\ 1\ 2 \rangle \langle j\ j+1\ k\ k-1\ k \rangle}{\langle k\ k+1\ j\ j+1 \rangle \langle 1\ 2\ k-1\ k \rangle}\]
Finite Integrals in Momentum Twistor Space

\[\int_{AB} \frac{\langle AB(j−1 j j+1) \cap (k−1 k k+1) \rangle \langle 1 2 j k \rangle}{\langle AB 12 \rangle \langle AB j−1 j \rangle \langle AB j j+1 \rangle \langle AB k−1 k \rangle \langle AB k k+1 \rangle} = \text{Li}_2(1 − u_1) + \text{Li}_2(1 − u_2) − \text{Li}_2(1 − u_3) − \text{Li}_2(1 − u_4) \]

\[u_1 \equiv \frac{\langle k k+1 1 2 \rangle \langle j−1 j k−1 k \rangle}{\langle k k+1 j−1 j \rangle \langle 1 2 k−1 k \rangle} \]

\[u_2 \equiv \frac{\langle j j+1 k k+1 \rangle \langle 1 2 j−1 j \rangle}{\langle j j+1 1 2 \rangle \langle k k+1 j−1 j \rangle} \]

\[u_3 \equiv \frac{\langle k k+1 1 2 \rangle \langle j j+1 k−1 k \rangle}{\langle k k+1 j j+1 \rangle \langle 1 2 k−1 k \rangle} \]

\[u_4 \equiv \frac{\langle j j+1 k−1 k \rangle \langle 1 2 j−1 j \rangle}{\langle j j+1 1 2 \rangle \langle k−1 k j−1 j \rangle} \]
Finite Integrals in Momentum Twistor Space

\[\int_{AB} \frac{\langle AB(j-1 \ j \ j+1) \cap (k-1 \ k \ k+1) \rangle \langle 1 \ 2 \ j \ k \rangle}{\langle AB \ 12 \rangle \langle AB \ j-1 \ j \rangle \langle AB \ j \ j+1 \rangle \langle AB \ k-1 \ k \rangle \langle AB \ k \ k+1 \rangle} = \text{Li}_2(1 - u_1) + \text{Li}_2(1 - u_2) - \text{Li}_2(1 - u_3) - \text{Li}_2(1 - u_4) + \text{Li}_2(1 - u_5) \]

\[u_1 \equiv \frac{\langle k \ k+1 \ 1 \ 2 \rangle \langle j-1 \ j \ k-1 \ k \rangle}{\langle k \ k+1 \ j-1 \ j \rangle \langle 1 \ 2 \ k-1 \ k \rangle} \]

\[u_2 \equiv \frac{\langle j \ j+1 \ k \ k+1 \rangle \langle 1 \ 2 \ j-1 \ j \rangle}{\langle j \ j+1 \ 1 \ 2 \rangle \langle k \ k+1 \ j-1 \ j \rangle} \]

\[u_3 \equiv \frac{\langle k \ k+1 \ 1 \ 2 \rangle \langle j \ j+1 \ k-1 \ k \rangle}{\langle k \ k+1 \ j \ j+1 \rangle \langle 1 \ 2 \ k-1 \ k \rangle} \]

\[u_4 \equiv \frac{\langle j \ j+1 \ k-1 \ k \rangle \langle 1 \ 2 \ j-1 \ j \rangle}{\langle j \ j+1 \ 1 \ 2 \rangle \langle k-1 \ k \ j-1 \ j \rangle} \]

\[u_5 \equiv \frac{\langle j \ j+1 \ k-1 \ k \rangle \langle k \ k+1 \ j-1 \ j \rangle}{\langle j \ j+1 \ k \ k+1 \rangle \langle 1 \ 2 \ k-1 \ j \rangle} \]

20th January 2011 University of North Carolina at Chapel Hill

The All-Loop S-Matrix of $\mathcal{N} = 4$ Super Yang-Mills
Finite Integrals in Momentum Twistor Space

\[
\int AB_{12} \left(\frac{\langle AB(j-1 \ j \ j+1) \cap (k-1 \ k \ k+1) \rangle \langle 1 \ 2 \ j \ k \rangle}{\langle AB \ 12 \rangle \langle AB \ j-1 \ j \rangle \langle AB \ j \ j+1 \rangle \langle AB \ k-1 \ k \rangle \langle AB \ k \ k+1 \rangle} \right)
\]

\[= \text{Li}_2(1 - u_1) + \text{Li}_2(1 - u_2) - \text{Li}_2(1 - u_3) - \text{Li}_2(1 - u_4) + \text{Li}_2(1 - u_5) + \log(u_1) \log(u_2)
\]

\[u_1 \equiv \frac{\langle k \ k+1 \ 1 \ 2 \rangle \langle j-1 \ j \ k-1 \ k \rangle}{\langle k \ k+1 \ j-1 \ j \rangle \langle 1 \ 2 \ k-1 \ k \rangle}
\]

\[u_2 \equiv \frac{\langle j \ j+1 \ k \ k+1 \rangle \langle 1 \ 2 \ j-1 \ j \rangle}{\langle j \ j+1 \ 1 \ 2 \rangle \langle k \ k+1 \ j-1 \ j \rangle}
\]

\[u_3 \equiv \frac{\langle k \ k+1 \ 1 \ 2 \rangle \langle j \ j+1 \ k-1 \ k \rangle}{\langle k \ k+1 \ j \ j+1 \rangle \langle 1 \ 2 \ k-1 \ k \rangle}
\]

\[u_4 \equiv \frac{\langle j \ j+1 \ k-1 \ k \rangle \langle 1 \ 2 \ j-1 \ j \rangle}{\langle j \ j+1 \ 1 \ 2 \rangle \langle k-1 \ k \ j-1 \ j \rangle}
\]

\[u_5 \equiv \frac{\langle j \ j+1 \ k-1 \ k \rangle \langle k \ k+1 \ j-1 \ j \rangle}{\langle j \ j+1 \ k \ k+1 \rangle \langle k-1 \ k \ j-1 \ j \rangle}
\]
Finite Integrals in Momentum Twistor Space

\[\int_{AB} \frac{\langle AB(j-1\ j\ j+1) \cap (k-1\ k\ k+1) \rangle \langle 1\ 2\ j\ k \rangle}{\langle AB\ 1\ 2 \rangle \langle AB\ j-1\ j \rangle \langle AB\ j\ j+1 \rangle \langle AB\ k-1\ k \rangle \langle AB\ k\ k+1 \rangle} \]

\[= \text{Li}_2(1 - u_1) + \text{Li}_2(1 - u_2) - \text{Li}_2(1 - u_3) - \text{Li}_2(1 - u_4) + \text{Li}_2(1 - u_5) + \log(u_1) \log(u_2) \]

\[u_2 \equiv \frac{\langle j\ j+1\ k\ k+1 \rangle \langle 1\ 2\ j-1\ j \rangle}{\langle j\ j+1\ 1\ 2 \rangle \langle k\ k+1\ j-1\ j \rangle} \]

\[u_3 \equiv \frac{\langle k\ k+1\ 1\ 2 \rangle \langle j\ j+1\ k-1\ k \rangle}{\langle k\ k+1\ j\ j+1 \rangle \langle 1\ 2\ k-1\ k \rangle} \]

\[u_4 \equiv \frac{\langle j\ j+1\ k-1\ k \rangle \langle 1\ 2\ j-1\ j \rangle}{\langle j\ j+1\ 1\ 2 \rangle \langle k-1\ k\ j-1\ j \rangle} \]

\[u_5 \equiv \frac{\langle j\ j+1\ k-1\ k \rangle \langle k\ k+1\ j-1\ j \rangle}{\langle j\ j+1\ k\ k+1 \rangle \langle k-1\ k\ j-1\ j \rangle} \]
Finite Integrals in Momentum Twistor Space

\[
\int_{\mathcal{A}\mathcal{B}} \frac{\langle \mathcal{A}\mathcal{B}(j-1 \ j \ j+1) \cap (k-1 \ k \ k+1) \rangle \langle 1 \ 2 \ j \ k \rangle}{\langle \mathcal{A}\mathcal{B} \ 1\!2 \rangle \langle \mathcal{A}\mathcal{B} \ j-1 \ j \rangle \langle \mathcal{A}\mathcal{B} \ j \ j+1 \rangle \langle \mathcal{A}\mathcal{B} \ k-1 \ k \rangle \langle \mathcal{A}\mathcal{B} \ k \ k+1 \rangle} = \text{Li}_2(1 - u_1) + \text{Li}_2(1 - u_2) - \text{Li}_2(1 - u_3) - \text{Li}_2(1 - u_4) + \text{Li}_2(1 - u_5) + \log(u_1) \log(u_2)
\]

\[
u_5 \equiv \frac{\langle j \ j+1 \ k-1 \ k \rangle \langle k \ k+1 \ j-1 \ j \rangle}{\langle j \ j+1 \ k \ k+1 \rangle \langle k-1 \ k \ j-1 \ j \rangle}
\]

\[
u_3 \equiv \frac{\langle k \ k+1 \ 1 \ 2 \rangle \langle j \ j+1 \ k-1 \ k \rangle}{\langle k \ k+1 \ j \ j+1 \rangle \langle 1 \ 2 \ k-1 \ k \rangle}
\]

\[
u_4 \equiv \frac{\langle j \ j+1 \ k-1 \ k \rangle \langle 1 \ 2 \ j-1 \ j \rangle}{\langle j \ j+1 \ 1 \ 2 \rangle \langle k-1 \ k \ j-1 \ j \rangle}
\]
Finite Integrals in Momentum Twistor Space

\[\int_{AB} \frac{\langle AB(j-1 \ j \ j+1) \cap (k-1 \ k \ k+1) \rangle \langle 1 \ 2 \ j \ k \rangle}{\langle AB \ 12 \rangle \langle AB \ j-1 \ j \rangle \langle AB \ j \ j+1 \rangle \langle AB \ k-1 \ k \rangle \langle AB \ k \ k+1 \rangle} = Li_2(1 - u_1) + Li_2(1 - u_2) - Li_2(1 - u_3) - Li_2(1 - u_4) + Li_2(1 - u_5) + \log(u_1) \log(u_2) \]

20th January 2011 University of North Carolina at Chapel Hill

The All-Loop S-Matrix of \(\mathcal{N} = 4 \) Super Yang-Mills
Finite Integrals in Momentum Twistor Space

\[
\int_{\mathcal{A}\mathcal{B}} \frac{\langle AB\, (j-1 \ j \ j+1) \cap (k-1 \ k \ k+1) \rangle \langle 1 \ 2 \ j \ k \rangle}{\langle AB\, 12 \rangle \langle AB\, j-1 \ j \rangle \langle AB\, j \ j+1 \rangle \langle AB\, k-1 \ k \rangle \langle AB\, k \ k+1 \rangle} = \text{Li}_2(1-u_1) + \text{Li}_2(1-u_2) - \text{Li}_2(1-u_3) - \text{Li}_2(1-u_4) + \text{Li}_2(1-u_5) + \log(u_1)\log(u_2)
\]

\[
u_5 = \frac{\langle j \ j+1 \ k-1 \ k \rangle \langle k \ k+1 \ j-1 \ j \rangle}{\langle j \ j+1 \ k \ k+1 \rangle \langle k-1 \ k \ j-1 \ j \rangle}
\]
Finite Integrals in Momentum Twistor Space

\[\int_{AB} \frac{\langle AB(j-1 \ j \ j+1) \cap (k-1 \ k \ k+1) \rangle \langle 1 \ 2 \ j \ k \rangle}{\langle AB \ 1 2 \rangle \langle AB \ j-1 \ j \rangle \langle AB \ j \ j+1 \rangle \langle AB \ k-1 \ k \rangle \langle AB \ k \ k+1 \rangle} = \text{Li}_2(1 - u_1) + \text{Li}_2(1 - u_2) - \text{Li}_2(1 - u_3) - \text{Li}_2(1 - u_4) + \text{Li}_2(1 - u_5) + \log(u_1) \log(u_2) \]
Finite Integrals in Momentum Twistor Space

\[
\int \frac{\langle AB(j-1 \ j \ j+1) \cap (k-1 \ k \ k+1) \rangle \langle 1 \ 2 \ j \ k \rangle}{\langle AB \ 12 \rangle \langle AB \ j-1 \ j \rangle \langle AB \ j \ j+1 \rangle \langle AB \ k-1 \ k \rangle \langle AB \ k \ k+1 \rangle} = \text{Li}_2(1 - u_1) + \text{Li}_2(1 - u_2) - \text{Li}_2(1 - u_3) - \text{Li}_2(1 - u_4) + \text{Li}_2(1 - u_5) + \log(u_1) \log(u_2)
\]
Finite Integrals in Momentum Twistor Space

\[
\int_{AB} \frac{\langle AB(j-1 \ j \ j+1) \cap (k-1 \ k \ k+1) \rangle \langle 1 \ 2 \ j \ k \rangle}{\langle AB \ 12 \rangle \langle AB \ j-1 \ j \rangle \langle AB \ j \ j+1 \rangle \langle AB \ k-1 \ k \rangle \langle AB \ k \ k+1 \rangle} = \text{Li}_2(1 - u_1) + \text{Li}_2(1 - u_2) - \text{Li}_2(1 - u_3) - \text{Li}_2(1 - u_4) + \text{Li}_2(1 - u_5) + \log(u_1) \log(u_2)
\]
In recent months, similar simplifications have been ‘guessed’ (and checked):

\[
A_n^{(2)}(\ldots, j^-, \ldots, k^-, \ldots) = \frac{\langle j \, k \rangle^4}{\langle 1 \, 2 \rangle \langle 2 \, 3 \rangle \cdots \langle n \, 1 \rangle}
\]
The Continuation of this Logic Through 3-Loops:

In recent months, similar simplifications have been ‘guessed’ (and checked):

\[\mathcal{A}^{(2)}_{n}(\ldots, j^{-}, \ldots, k^{-}, \ldots) = \frac{\langle j \ k \rangle^{4}}{\langle 1 \ 2 \rangle \langle 2 \ 3 \rangle \cdots \langle n \ 1 \rangle} \]

\[\times \left\{ 1 \right\} \]
The Continuation of this Logic Through 3-Loops:

In recent months, similar simplifications have been ‘guessed’ (and checked):

\[A_{n}^{(2)}(\ldots, j, \ldots, k, \ldots) = \frac{\langle j \, k \rangle^4}{\langle 1 \, 2 \rangle \langle 2 \, 3 \rangle \ldots \langle n \, 1 \rangle} \times \left\{ 1 + \sum_{i < j < i} \right\} \]

\[\begin{array}{c}
\text{Diagram}
\end{array} \]
In recent months, similar simplifications have been ‘guessed’ (and checked):

\[A_n^{(2)}(\ldots, j^-, \ldots, k^-, \ldots) = \frac{\langle j \, k \rangle^4}{\langle 1 \, 2 \rangle \langle 2 \, 3 \rangle \cdots \langle n \, 1 \rangle} \]

\[
\times \left\{ 1 + \sum_{i<j<i}^{i<j<i} \right\} + \frac{1}{2} \sum_{i<j<k<l<i}^{i<j<k<l<i}
\]
The Continuation of this Logic Through 3-Loops:

In recent months, similar simplifications have been ‘guessed’ (and checked):

\[
\mathcal{A}^{(2)}_{n}(\ldots, j^{-}, \ldots, k^{-}, \ldots) = \frac{\langle j \, k \rangle^4}{\langle 1 \, 2 \rangle \langle 2 \, 3 \rangle \cdots \langle n \, 1 \rangle}
\]

\[
\times \left\{ 1 + \sum_{i<j<i} X \right\} + \frac{1}{2} \sum_{i<j<k<l<i} j \]

\[
+ \frac{1}{3} \sum_{i_1 \leq i_2 < j_1 \leq j_2 < k_1 \leq k_2 < i_1} \]

\[
+ \frac{1}{2} \sum_{i_1 \leq j_1 < k_1 < k_2 \leq j_2 < i_2 < i_1} \]

20th January 2011 University of North Carolina at Chapel Hill

The All-Loop S-Matrix of $\mathcal{N} = 4$ Super Yang-Mills
Forward Looking Comments

- Do there exist alternative, e.g. purely geometric ways of characterizing the full S-Matrix?
- How can we systematically regulate and compute momentum-twistor loop integrals?
 - Can we perform these integrals analytically at the outset?
 - Deeper connections to the leading-singularity programme?
 - Connections to ‘symbols’ & mixed Tate motives?
 - How should the integrals coming from recursions be done directly?
- How easy is it to extend these results to other theories?
 - Non-supersymmetric (planar) Yang-Mills?
 - Non-planar theories?
 - Massive theories?
- ...
Forward Looking Comments

- Do there exist alternative, *e.g.* purely geometric ways of characterizing the full S-Matrix?

- **How can we systematically regulate and compute momentum-twistor loop integrals?**
 - Can we perform these integrals analytically at the outset?
 - Deeper connections to the leading-singularity programme?
 - Connections to ‘symbols’ & mixed Tate motives?
 - How should the integrals coming from recursions be done directly?

- **How easy is it to extend these results to other theories?**
 - non-supersymmetric (planar) Yang-Mills?
 - non-planar theories?
 - massive theories?

- …
Forward Looking Comments

- Do there exist alternative, e.g. purely geometric ways of characterizing the full S-Matrix?
- How can we systematically regulate and compute momentum-twistor loop integrals?
 - Can we perform these integrals analytically at the outset?
 - Deeper connections to the leading-singularity programme?
 - Connections to ‘symbols’ & mixed Tate motives?
 - How should the integrals coming from recursions be done directly?
- How easy is it to extend these results to other theories?
 - Non-supersymmetric (planar) Yang-Mills?
 - Non-planar theories?
 - Massive theories?
- ...
Do there exist alternative, e.g. purely geometric ways of characterizing the full S-Matrix?

How can we systematically regulate and compute momentum-twistor loop integrals?
 - Can we perform these integrals analytically at the outset?
 - Deeper connections to the leading-singularity programme? connections to ‘symbols’ & mixed Tate motives?
 - How should the integrals coming from recursions be done directly?

How easy is it to extend these results to other theories?
 - non-supersymmetric (planar) Yang-Mills?
 - non-planar theories?
 - massive theories?

...
Do there exist alternative, e.g. purely geometric ways of characterizing the full S-Matrix?

How can we systematically regulate and compute momentum-twistor loop integrals?
- Can we perform these integrals analytically at the outset?
- Deeper connections to the leading-singularity programme?
- Connections to ‘symbols’ & mixed Tate motives?
- How should the integrals coming from recursions be done directly?

How easy is it to extend these results to other theories?
- non-supersymmetric (planar) Yang-Mills?
- non-planar theories?
- massive theories?

...
Forward Looking Comments

- Do there exist alternative, e.g. purely geometric ways of characterizing the full S-Matrix?
- How can we systematically regulate and compute momentum-twistor loop integrals?
 - Can we perform these integrals analytically at the outset?
 - Deeper connections to the leading-singularity programme?
 - connections to ‘symbols’ & mixed Tate motives?
 - How should the integrals coming from recursions be done directly?
- How easy is it to extend these results to other theories?
 - non-supersymmetric (planar) Yang-Mills?
 - non-planar theories?
 - massive theories?
- …
Forward Looking Comments

- Do there exist alternative, *e.g.* purely geometric ways of characterizing the full S-Matrix?
- How can we systematically regulate and compute momentum-twistor loop integrals?
 - Can we perform these integrals analytically at the outset?
 - Deeper connections to the leading-singularity programme?
 - Connections to ‘symbols’ & mixed Tate motives?
 - How should the integrals coming from recursions be done directly?
- How easy is it to extend these results to other theories?
 - non-supersymmetric (planar) Yang-Mills?
 - non-planar theories?
 - massive theories?
- ...
Do there exist alternative, *e.g.* purely geometric ways of characterizing the full S-Matrix?

How can we systematically regulate and compute momentum-twistor loop integrals?
- Can we perform these integrals analytically at the outset?
- Deeper connections to the leading-singularity programme?
- Connections to ‘symbols’ & mixed Tate motives?
- How should the integrals coming from recursions be done directly?

How easy is it to extend these results to other theories?
- non-supersymmetric (planar) Yang-Mills?
- non-planar theories?
- massive theories?

...
Forward Looking Comments

- Do there exist alternative, e.g. purely geometric ways of characterizing the full S-Matrix?
- How can we systematically regulate and compute momentum-twistor loop integrals?
 - Can we perform these integrals analytically at the outset?
 - Deeper connections to the leading-singularity programme?
 - Connections to ‘symbols’ & mixed Tate motives?
 - How should the integrals coming from recursions be done directly?
- How easy is it to extend these results to other theories?
 - non-supersymmetric (planar) Yang-Mills?
 - non-planar theories?
 - massive theories?

...
Forward Looking Comments

- Do there exist alternative, e.g. purely geometric ways of characterizing the full S-Matrix?
- How can we systematically regulate and compute momentum-twistor loop integrals?
 - Can we perform these integrals analytically at the outset?
 - Deeper connections to the leading-singularity programme?
 - Connections to ‘symbols’ & mixed Tate motives?
 - How should the integrals coming from recursions be done directly?
- How easy is it to extend these results to other theories?
 - Non-supersymmetric (planar) Yang-Mills?
 - Non-planar theories?
 - Massive theories?
- ...