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Abstract: Study of the non-Abelian Seiberg-
Witten map by a cohomological approach. We
introduce ghosts and determine the cobound-
ary operator. This allows us to find solutions
of the map by constructing a corresponding
homotopy operator and clarifies the nature of
the ambiguities which arise.

Solutions of the SW map are also computed
by means of a differential equation.



Plan:
Gauge theory on noncommutative spaces
Seiberg-Witten map

Introduction of ghosts and of the cobound-
ary operator

Construction of the corresponding homo-
topy operator

Seiberg-Witten differential equation



Gauge theory on noncommutative spaces
Space-time commutation relations
z* coordinates, i =1,...,D
D space-time dimension
[aci x a:j} =i oY

where @ is the constant Poisson tensor

gl — _git
and the Weyl-Moval product is defined by

frg = fei?I00sg
= fg+ 57:9”81-1?8]9
1 ..
—gezjtklaiakf 8j319 + O[t3]
i = 0
with 0; = 55

It is an associative but not commutative prod-
uct.

(fxg)xh=fx(gxh)



In string theory the Poisson tensor 6% is related
to the antisymmetric tensor B% by the formula

0" = 27a 1 !
g+ 2na'B

where [ ] antisymmetric part, g metric,
o' string tension

In principle 6 should be treated as a dynamical
field and is therefore not necessarily constant.
But we restrict ourselves to the case of con-
stant 6.

In the limit /B >> g we have the simple rela-
tion

gii — L

]



Seiberg-Witten map

Seiberg and Witten, JHEP09(1999)032

Gauge transformation on commutative space
a; gauge potential, a gauge parameter

daa; = O;a — i|a;, a

Gauge transformation on noncommutative space
A; gauge potential, A gauge parameter

Az' — Ai(a,aa,BQ(L,'“)
/\:/\(a78a7...,a78a,...),

5/\Ai — 87;/\ —i[Ai’,‘/\] = 87;A—7:(A7;*/\—A*Ai)
Seiberg-Witten equation

We require

Az' —|— 5/\Ai — Ai(aj —|— 5aaj, < )
It is at the same time an equation for both A;
and A



It expresses the non-commutative gauge
field and parameter in terms of the com-
mutative ones.

Usually the algebra of the gauge fields does
not close in the noncommutative case and
an infinite number of fields is expected.
The SW map allows us to express the non-
commutative fields in terms of the commu-
tative ones, which are a finite number.

In string theory the existence of the SW
map follows from the fact that two differ-
ent regularization techniques (Pauli-Villars
and point-splitting) lead either to a com-
mutative or a noncommutative theory and
therefore the two theories are supposed to
be physically equivalent.



An interaction which is complicated when
expressed in terms of the commutative vari-
ables becomes a simple free theory in the
noncommutative coordinates. The inter-
action is encoded in the noncommutative
structure of the space.

There are different types of ambiguities in
the solutions of the Seiberg-Witten equa-
tion, as a consequence of field redefinitions
and the dependence on the choice of the
path in @-space.

(Asakawa and Kishimoto, hep-th/9909139)



Seiberg-Witten equation as a consistency con-
dition
Jurco, Mdller, Schraml, Schupp, Wess, hep-th/0104153

Introduce ¥ gauge field
On commutative space

Composition property of gauge transformations

0,05 ¥ = [, BIW = —id, g1

On noncommuative space

(A \U(zp,a,aa,aQa,...)
5/\\U = ANxWV
Require
[5/\&,5/\5}“! = |da, 05| W



From

Napl = [0 0ns] W
= i (Jal\g — 0sNa) x W + [Na ¥ Ag| x W

by dropping W follows
(0ag — 85Ma) — i [Aa ¥ Ag| + i, 5 = O

Advantages of this formulation:

e The equation for A is decoupled from the
equation for A,.

e In the noncommutative case the gauge pa-
rameters are elements of the envelopping
algebra of the Lie algebra and not neces-
sarily of the Lie algebra, unless we are con-
sidering the case of the fundamental rep-
resentation of U(n). The Seiberg-Witten
map allows us to express this infinite num-
ber of noncommutative fields in terms of a
finite number of commutative fields.



Introduction of the ghost fields and
of the coboundary operator

Instead of the gauge parameter o; use an odd
ghost field v and define

OV = 2

o;v — ila;,v] = Dv

51)0,7;
with the properties
52 = 0
[51)782'] 0
So(f1f2) = (Buf1)fa+ (—1)%9UD) 11 (6, f2)
Moreover, define the coboundary operator

oy — i{v,-} on odd quantities
A = . s
dvy — i[v,-] oOn even quantities

so that
Av = —'ifv2, Aa; = O;v
A? = 0

(Af1)f2+ (—1)%9UV p1 (A )

A(f1f2)



Seiberg-Witten equation in the ghost formal-
ism

oV = IAxWV
ON = IANxA
0A; = O;N—1[A; ¥ ]

The equation for A follows from the nilpotency
of 4 and the associativity of the star product.

Expansion in 64

Gauge parameter
A= ANO A4
AO =, A= %gij {B0,a;)
Gauge potential
Ap = AD a4
A§0) = a,, Agl) = —%Hkl {ag, Oja; + Fy;}

with Fij = 87;0,]' — 8ja7; — i[ai, aj] field strength



Seiberg-Witten equation for A:
ot §uv = iv?
1t AAD = —%eijbibj
ond . AN2) = —éeijeklaibkajbl
_%gij[bi7 ;AN D] + iANDAD)
Seiberg-Witten equation for A;:
oth:  AAl® =,
15t AAD = p,A() %le{bk, da;}
ond: AAP) = DA A A
—%9“{5/@, AN} - %9kl{3k/\(1)7 Oa;}
—éeklemn [0.bm, 10na;]

Here we have introduced the useful notation

bi = 8{0



General structure of the Seiberg-Witten equa-
tion to order n :
AN = pr(n)
(n) (n)
AAi U,

Consistency conditions following from A2 = 0:

AM™ =0, AUM™ =0

Ambiguities in the solutions

If A and A; are solutions so are
Al = A L Ag(n)
for arbitrary S(n) of ghost number 0 and for

s/(") of ghost number 0 satisfying AS! = 0
(Asakawa and Kishimoto, hep-th/9909139)

The ambiguity due to S is of a gauge type, the
one due to S’ is of a covariant type.



The Seiberg-Witten equations
OV =iAx W, SA=iAxN\ 6A; = N —1i[A; ¥ N\]

are invariant under the noncommutative finite
gauge transformations (Stora)

AN - G Ing+icis,G
A, —» G A, c+icTe G
v —» G lw

where all products are star products,
G is an arbitrary element of ghost number O.

The gauge ambiguities at the infinitesimal level
can be recovered by choosing

G=1-—ism
To first order
S(l) — —ieij[ai, CLJ]
Only for abelian gauge theory there can be an

ambiguity of covariant type also for A, which
however contains v.



The consistency condition for the SW map
suggests an analogy with the cohomology of
chiral anomalies (Zumino, Les Houches lecture).

It is not possible to invert A, because it is
nilpotent, but it is possible to construct the
homotopy operator K satisfying

AK+ KA =1
Then
AKM+ KAM=AKM=M

and therefore A = KM is a solution.

Only b; and its derivatives enter in the equa-
tions, and never v itself. K is defined only on
b;.



Construction of K proceeds in two steps.
Basic variables: a;, b;

First, define infinitesimal version L
Action of L:

Lai — O, Lbi — Qay, [L, Dz] =0
L(f1f2) = (Lf1) fo + (—1)%9(f1) £1 (L f5)

It satisfies L2 = 0.

L is odd.

Introduce d = total order(monomial in a,b)
Then the homotopy operator K is defined:

K=D"1L
with D1 Imear operator, which on monomials
multiplies by2d
It satisfies K< =

K is odd and has ghost number -1.
Example:

A1)

1 .. 1 ..
K(—Eewz)ibj) — —597«71) LL(bsb))
1 ..
— —EQZJD 1(aibj—biaj)

— %9217' {b;, ;)



The variables a; and b; are not free, because
from b; = O;v it follows

(%bj — (9]'1)1' =0
which is equivalent to
AFij — Dibj — Djbi -|— i[bi, CLj] -|- i[ai, bj] =0

Analogously, the covariant derivatives have to
satisfy the constraint

[Fz'j7 ] —[D;, D;](-) =0
Solution: Symmetrization procedure
Separate the symmetric part of DFa or DFb

and substitute the constraints recursively for
the antisymmetric pieces. For example:

1 .
D;a; — E(Dz’aj + Dja; + F;; —ila;, a4])

Then treat F' and its derivatives as scalars.
There are no independent constraints of higher
order.



Solutions to second order

By applying the homotopy operator to the sym-
metrized M(2):

1. 1 0
A2 = —Eef{az-,géw”+Z[aj,/\<1>]}
+6%gkL( — i[Dz-ak, Db

_I_[[a’z: a’k]a bl + [a,],bl]]

249

+2—4[Dia’kza [Cl,j, bl]]

1 1 1 7
+§(ai(§Djak — ngaj + E[aj, ar])b;
1 1 7
—bi(ngak — ngaj + E[aj, ar])a

1 .
+{6(Diak — Dya;) + %[az’, arl,{a;, b;1}1)) -

A known solution (Munich group) is

~ 1 ..

A2 = 20968 (— {bs, {ag, ilaj ) + 40,0} }
—’I:{CL]‘, {a’l? [b’ln ak]}} + 27’[[0’]7 al]a [b’L7 a’k]]
+2[[b;, ag] + i0;by, 9ja;])



As expected, the two solutions A(2) and A(2)
differ by an ambiguity AS(2) with
5@ — KA@ _ A
= 9ij9kl[(2i4([aj>[Diakaal]]
+2(D;agaja; + aja;Djay)
+1—16[aiakaAFjl]] :

The same technique can be applied to com-
pute the gauge potential A§2) and to higher
orders in 6%, It can be done e.g. by computer.



Let 6 — t0.

The star product depends on an evolution pa-
rameter t.

Define new operators at “time” ¢:

A, — oy —i{A\ ¥ -} on odd quantities
t= 1 6, —i[A*:] on even quantities

Covariant derivative D; ;
Djy = 0; —i[A; ¥ ]
They have the properties
AtAi — 8’&/\7 At2 = 0, [Ata Di,t] =0
A(f1f2) = (Aef1) f2 + (=1)%9UD f1 (A f)
Differentiate the Seiberg-Witten equations

Ar A = —60F9 A % ON

' 1
Ay A = A A +§9kl{8k:Ai T O}

where j’= Z—J;



Then a solution are the evolution equations
. 1 ..
A= 209 {0iN A
' 1 ki
A = —29 {Ay, 01 A; + Fi;}
By differentiating /\
. 1 ..
A= 09N {{0rN T Aj} (0Nt B | A
- {3z'/\ H {Ak Y OlA; + Flj}}
+2i | 00N % 0,4y )

mn
We can compute W' We can obtain solu-

tions A(™) as
A — 1d™A
n! dt™
The solution to second order obtained from /"\
again differs from A(2) by an ambiguity.

With this method the homotopy operator has
to be applied at most at first order: no prob-
lems with constraints.



With a cohomological approach the solu-
tions to the SW equations can be com-
puted for each gauge group and to each
order in 6.

By using ghosts a connection with the Ba-
talin-Vilkoviskij formalism can be made.
The SW map could be formulated in terms
of a master equation (see Barnich, Grigoriev,
Henneaux, hep-th/0106188)

This type of cohomology is related to an
algebroid structure, because it comes from
the action of Lie algebra on the fields. Such
structure could be used to investigate its
properties.

Through the use of cohomology the renor-
malization properties of a noncommutative



gauge theory could be studied. Expanding
in 6 is a way to get around the infrared-
ultraviolet mixing occurring in noncommu-
tative field theories (see Grosse with Vienna
group, hep-th/0104097)

It is possible to deform the BRST operator
0 itself rather than the gauge parameter
and the gauge potential. It is an equivalent
approach (Weinstein).

The Weyl-Moyal product appears in string
field theory, because it is related to the
Witten star product. The SW map may
prove relevant in this context.



