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Abstract: In this lecture I review recent progress on construction of manifolds with
exceptional holonomy and their application in string theory and M-theory.

1 Introduction

Recently, M-theory compactifications on manifolds of exceptional holonomy have at-
tracted considerable attention. These models allow one to geometrically engineer various
minimally supersymmetric gauge theories, which typically have a rich dynamical struc-
ture. A particularly interesting aspect of such models is the behaviour near a classical
singularity, where one might expect extra massless degrees of freedom, enhancement of
gauge symmetry, or a phase transition to a different theory.

In this lecture I will try to explain two interesting problems in this subject — namely,
construction of manifolds with exceptional holonomy and the analysis of the physics as-
sociated with singularities — and present general methods for their solution. I will also
try to make this lecture self-contained and pedagogical, so that no special background
is needed. In particular, below we start with an introduction to special holonomy, then
explain its relation to minimal supersymmetry and proceed to the main questions.

1.1 Special Holonomy and Supersymmetry

Consider an oriented manifold X of real dimension n and a vector ¢’ at some point on this
manifold. One can explore the geometry of X by doing a parallel transport of ¢ along a
closed contractible path in X, see Figure 1. Under such an operation the vector ¥ may
not come back to itself. In fact, generically it will transform into a different vector that
depends on the geometry of X, on the path, and on the connection which was used to
transport ¢. For a Riemannian manifold X, the natural connection is the Levi-Cevita
connection. Furthermore, Riemannian geometry also tells us that the length of the vector
covariantly transported along a closed path should be the same as the length of the original
vector. But the orientation may be different, and this is precisely what we are going to
discuss.

The relative orientation of the vector after parallel transport with respect to the ori-
entation of the original vector 7/ is described by holonomy. On a n-dimensional manifold
holonomy is conveniently characterised by an element of the special orthogonal group,
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Figure 1: Parallel transport of a vector ¢ along a closed path on the manifold X.

SO(n). It is not hard to see that the set of all holonomies themselves form a group,
called the holonomy group, where the group structure is induced by the composition of
paths and an inverse corresponds to a path traversed in the opposite direction. From the
way we introduced the holonomy group, Hol(X), it seems to depend on the choice of the
point where we start and finish parallel transport. However, for a generic choice of such
point the holonomy group does not depend on it, and therefore Hol(X) becomes a true
geometric characteristic of the manifold X. By definition, we have

Hol(X) C SO(n) (1)

where the equality holds for a generic Riemannian manifold X.

In some special instances, however, one finds that Hol(X) is a proper subgroup of
SO(n). In such cases, we say that X is a special holonomy manifold or a manifold with
restricted holonomy. These manifolds are in some sense distinguished, for they exhibit
nice geometric properties. These properties are typically associated with the existence
of non-degenerate (in some suitable sense) p-forms which are covariantly constant. Such
p-forms also serve as calibrations, and are related to the subject of minimal varieties.

The possible choices for Hol(X) C SO(n) are limited, and were completelty classified
by M. Berger in 1955 [1]. Specifically, for X simply-connected and neither locally a
product nor symmetric, the only possibilities for Hol(X), other than the generic case of
SO(n), are U (2), SU (), Sp(2) x Sp(1), Sp (%), G2 !, Spin(7) or Spin(9), see Table
1. The first four of these correspond, respectively, to a Kahler, Calabi-Yau, Quaternionic
Kahler or hyper-Kahler manifold. The last three possibilities are the so-called exceptional
cases, which occur only in dimensions 7, 8 and 16, respectively. The case of 16-manifold
with Spin(9) holonomy is in some sense trivial since the Riemannian metric on any such
manifold is always symmetric [2].

Roughly speaking, one can think of the holonomy group as a geometric characteristic of
the manifold that tells us how much symmetry this manifold has. Namely, the smaller the
holonomy group, the larger the symmetry of the manifold X. Conversely, for manifolds
with larger holonomy groups the geometry is less restricted.

This philosophy becomes especially helpful in the physical context of superstring/M-
theory compactifications on X. There, the holonomy of X becomes related to the degree of
supersymmetry preserved in compactification: the manifolds with larger holonomy group
typically preserve smaller fraction of the supersymmetry. This provides a nice link between
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Metric | Holonomy | Dimension

Kéhler U (2) n = even
Calabi-Yau SU (%) n = even
HyperKahler Sp (%) n = multiple of 4
Quaternionic | Sp (%) Sp(1) | n = multiple of 4
Exceptional Gs 7
Exceptional Spin(7) 8
Exceptional Spin(9) 16

Table 1: Berger’s list of holonomy groups.

the ‘geometric symmetry’ (holonomy) and the ‘physical symmetry’ (supersymmetry). In
Table 2 we illustrate this general pattern with a few important examples, which will be
used later.

The first example in Table 2 is a torus, 7™, which we view as a quotient of n-dimensional
real vector space, R", by a lattice. In this example, it is easy to deduce directly from our
definition that X = T™ has trivial holonomy group, inhereted from the trivial holonomy
of R™. Indeed, no matter which path we choose on T™, a parallel transport of a vector 7
along this path always brings it back to itself. Hence, this example is the most symmetric
one, in the sense of the previous paragraph, Hol(X) = 1. Correspondingly, in string
theory toroidal compactifications preserve all of the original supersymmetries.

Our next example is Hol(X) = SU(3) which corresponds to Calabi-Yau manifolds of
complex dimension 3 (real dimension 6). These manifolds exhibit a number of remarkable
properties, such as mirror symmetry, and are reasonably well studied both in the math-
ematical and in the physical literature. We just mention here that compactification on
Calabi-Yau manifolds preserves 1/4 of the original supersymmetry. In particular, com-
pactification of heterotic string theory on X = CYj3 yields N’ = 1 effective field theory in
3 + 1 dimensions.

The last two examples in Table 2 are G2 and Spin(7) manifolds; that is, manifolds
with holonomy group G2 and Spin(7), respectively. They nicely fit into the general
pattern, so that as we read Table 2 from left to right the holonomy increases, whereas
the fraction of unbroken supersymmetry decreases. Specifically, compactification of M-
theory on a manifold with G5 holonomy leads to AN/ = 1 four-dimensional theory. This
is similar to the compactification of heterotic string theory on Calabi-Yau three-folds.
However, an advantage of M-theory on GG manifolds is that it is completely ‘geometric’.
Compactification on Spin(7) manifolds breaks supersymmetry even further, to the amount
which is too small to be realised in four-dimensional field theory.

Summarising, in Table 2 we listed some examples of special holonomy manifolds that
will be discussed below. All of these manifolds preserve a certain fraction of supersymme-
try, which depends on the holonomy group. Moreover, all of these manifolds are Ricci-flat,

Ri]’ =0.
This useful property guarantees that all backgrounds of the form
Rll—n x X

automatically solve eleven-dimensional Einstein equations with vanishing source terms for
matter fields.
Of particular interest are M-theory compactifications on manifolds with exceptional



Manifold X | T™ CY;3 XG2 Xsz'n(7)

Hol(X) | 1 c SUB) c Gy C Spin(7)

SUSY 1 > 14 > 1/8 > 1/16

Table 2: Relation between holonomy and supersymmetry for certain manifolds.

holonomy,
M — theory on M — theory on
G5 manifold Spin(7) manifold
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" U (2)
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since they lead to effective theories with minimal supersymmetry in four and three dimen-
sions, respectively. In such theories one can find many interesting phenomena, e.g. con-
finement, various dualities, rich phase structure, non-perturbative effects, etc. Moreover,
minimal supersymmetry in three and four dimensions (partly) helps with the following
important problems:

e The Hierarchy Problem
e The Cosmological Constant Problem

e The Dark Matter Problem

All this makes minimal supersymmetry very attractive and, in particular, motivates the
study of M-theory on manifolds with exceptional holonomy. In this context, spectrum of
elementary particles in the effective low-energy theory and their interactions are encoded
in the geometry of space X. Therefore, understanding the latter may help us to learn
more about dynamics of minimally supersymmetric field theories, or even about M-theory
itself!

1.2 Why Exceptional Holonomy is Hard

Once we have introduced manifolds with restricted (or special) holonomy, let us try to ex-
plain why until recently so little was known about the exceptional cases, G5 and Spin(7).
Indeed, on the physics side, these manifolds are very natural candidates for constructing
minimally supersymmetric field theories from string/M-theory compactifications. There-
fore, one might expect exceptional holonomy manifolds to be at least as popular and
attractive as, say, Calabi-Yau manifolds. However, there are several reasons why excep-
tional holonomy appeared to be a difficult subject; here we will stress two of them:

e Existence



e Singularities

Let us now explain each of these problems in turn. The first problem refers to the
existence of exceptional holonomy metric on a given manifold X. Namely, it would be
useful to have a general theorem which, under some favorable conditions, would guarantee
the existence of such a metric. Indeed, the original Berger’s classification, described earlier
in this section, only tells us which holonomy groups can occur, but says nothing about
examples of such manifolds or conditions under which they exist. To illustrate this further,
let us recall that when we deal with Calabi-Yau manifolds we use such a theorem all the
time — it is a theorem due to Yau (originally, Calabi’s conjecture) which guarantees the
existence of a Ricci-flat metric on a compact, complex, Kéhler manifold X with ¢;(X) =0
[3]. Unfortunately, no analogue of this theorem is known in the case of G5 and Spin(7)
holonomy (the local existence of such manifolds was first established in 1985 by Bryant
[4]). Therefore, until such a general theorem is found we are limited to a case-by-case
analysis of the specific examples. We will return to this problem in the next section.

The second reason why exceptional holonomy manifolds are hard is associated with
singularities of these manifolds. As will be explained in more detail in section 2, interesting
physics occurs at the singularities. Moreover, the most interesting physics is associated
with the types of singularities of maximal codimension, which exploit the geometry of the
special holonomy manifold to the fullest. Indeed, singularities with smaller codimension
can typically arise in higher dimensional compactifications and, therefore, do not expose
peculiar aspects of exceptional holonomy manifolds related to the minimal amount of
supersymmetry. Until recently, little was known about these types of degenerations of
manifolds with G5 and Spin(7) holonomy. Moreover, even for known examples of isolated
singularities, the dynamics of M-theory in these backgrounds was unclear. Finally, it is
important to stress that mathematical understanding of exceptional holonomy manifolds
would be incomplete too without proper account of singular limits.

The rest of this lecture consists of two parts which deal with each of these problems in
turn.

2 Construction of Manifolds With Exceptional Holonomy

In this section we review various methods of constructing compact and non-compact
manifolds with G2 and Spin(7) holonomy. In the absence of general existence theorems,
akin to the Yau’s theorem [3], these methods become especially valuable. It is hard to
give full justice to all the existing techniques in one section. So, we will try to explain
only a few basic methods, focusing mainly on those which played an important role in
recent developments in string theory. We also illustrate these general techniques with
several concrete examples that will appear in the discussion of singularities and M-theory
dynamics.

2.1 Compact Manifolds

The first examples of metrics with G2 and Spin(7) holonomy on compact manifolds were
constructed by D. Joyce [5]. The basic idea is to start with toroidal orbifolds of the form

T")T  or T¥T (3)

where I' is a finite group, e.g. a product of Zs cyclic groups. Notice that T7 and T®
themselves can be regarded as G5 and Spin(7) manifolds, respectively. In fact, they



Figure 2: A cartoon representing Joyce orbifold 7" /T with C? /Z orbifold points.

possess infinitely many Gy and Spin(7) structures. Therefore, if I' preserves one of these
structures the quotient space automatically will be a manifold with exceptional holonomy.

Example [5]: Consider a torus 77, parametrised by periodic variables z; ~ z; + 1,
1=1,...,7. As we pointed out, it admits many G, structures. Let us choose one of them:

O =e'Ne’ne+e NetAeP+el Neb neTFeP netAeb—e2 AedNe” —eB Net heT —eP neP Aeb
where e/ = dz;. Furthermore, let us take
I' = Z2 X ZQ X ZQ

generated by three involutions

o : (.’L’l,---,.T?) = (.’1'1,372,333,—.’174,—375,—376,—.'L'7)
ﬁ : (.fE]_,---,-'E’r) = ($1,_$2,_$3,$4,$5,%_.',Eﬁ,—.fﬂ’r)
v : (xla'--ax7) = (—1'1,.’1'2,—333,.’134,% _$5,x65% —.’137)

It is easy to check that these generators indeed satisfy o? = 32 = 42 = 1 and that the
group I' = («, 3,7) preserves the associative three-form ® given above. It follows that
the quotient space X = T7/T is a manifold with G5 holonomy. More precisely, it is an
orbifold since the group I' has fixed points of the form T3 x C?/Z,. The existence of
orbifold fixed points is a general feature of the Joyce construction.

The quotient space (3) typically has bad (singular) points, as shown in Fig. 2. In order
to find a nice manifold X with G5 or Spin(7) holonomy one has to repair these singular-
ities. In practice, it means removing the local neighbourhood of each singular point and
replacing it with a smooth geometry, in a way which does not affect the holonomy group.
This may be difficult (or even impossible) for generic orbifold singularities. However, if we
have orbifold singularities that can also appear as degenerations of Calabi-Yau manifolds,
then things simplify dramatically.

Suppose we have a Zs orbifold, as in the previous example:

R"* x C*/Z,

where Z, acts only on the C? factor (by reflecting all the coordiantes). This type of
orbifold singularity can be obtained as a singular limit of the A; ALE space:

R"* x ALE,, — R"*xC?/Z,



Since both ALE space and its singular limit have SU(2) holonomy group they represent
local geometry of the K3 surface. This is an important point; we used it implicitly to
resolve the orbifold singularity with the usual tools from algebraic geometry. Moreover,
Joyce proved that resolving orbifold singularities in this way does not change the holonomy
group of the quotient space (3). Therefore, by the end of the day, when all singularities
are removed, we obtain a smooth, compact manifold X with G5 or Spin(7) holonomy. In
the above example, one finds a smooth manifold X with G5 holonomy and Betti numbers:

bo(X) =12, by(X) = 43

There are many other examples of this construction, which are modelled not only on
K3 singularities, but also on orbifold singularities of Calabi-Yau three-folds [5]. More
examples can be found by replacing tori in (3) by products of the K3 surface or Calabi-
Yau three-folds with lower-dimensional tori. In such models, finite groups typically act
as involutions on K3 or Calabi-Yau manifolds, to produce fixed points of a familiar kind.
Again, resolving the singularities one finds compact, smooth manifolds with exceptional
holonomy.

It may look a little disturbing that in Joyce construction one always finds a compact
manifold X with exceptional holonomy near a singular (orbifold) limit. However, from
the physics point of view, this is not a problem at all since interesting phenomena usually
occur when X develops a singularity. Indeed, compactification on a smooth manifold X
whose dimensions are very large (compared to the Planck scale) leads to a very simple
effective field theory; it is abelian gauge theory with some number of scalar fields coupled
to gravity. To find more interesting physics, such as non-abelian gauge symmetry or chiral
matter, one needs singularities.

Moreover, there is a close relation between various types of singularities and the effec-
tive physics they produce. A simple, but very important aspect of this relation is that
codimension d singularity of X can be associated with physics of D > 11 — d dimensional
field theory. For example, there is no way one can obtain four-dimensional chiral matter
or parity symmetry breaking in D = 2 + 1 dimensions from C/Z, singularity in X. In-
deed, both of these phenomena are specific to their dimension and can not be lifted to a
higher-dimensional theory. Therefore, in order to reproduce them from compactification
on X one has to use the geometry of X ‘to the fullest’ and consider singularities of max-
imal codimension. This motivates us to study isolated singular points in G5 and Spin(7)
manifolds.

Unfortunately, even though Joyce manifolds naturally admit orbifold singularities, none
of them contains isolated G or Spin(7) singularities. Indeed, as we explained earlier, it
is crucial that orbifold singularities are modelled on Calabi-Yau singularities, so that we
can treat them using the familiar methods. Therefore, at best such singularities can give
us the same physics as one finds in the corresponding Calabi-Yau manifolds.

Apart from a large class of Joyce manifolds, very few explicit constructions of com-
pact manifolds with exceptional holonomy are known. One nice approach was recently
suggested by A. Kovalev [6], where a smooth, compact 7-manifold X with G5 holonomy
is obtained by gluing ‘back-to-back’ two asymptotically cylindrical Calabi-Yau manifolds
W1 and WQ,

X = (W1 X Sl) U (W2 X Sl)

Although this construction is very elegant, so far it has been limited to very specific types
of G5 manifolds. In particular, it would be interesting to study deformations of these



. —

Figure 3: A cone over a compact space Y.

spaces and to see if they can develop isolated singularities interesting in physics. This
leaves us with the following

Open Problem: Construct compact Gy and Spin(7) manifolds
with various types of isolated singularities

2.2 Non-compact Manifolds

As we already mentioned earlier, interesting physics occurs at the singular points of the
special holonomy manifold X. Depending on the singularity, one may find, for example,
extra gauge symmetry, global symmetry, or massless states localized at the singularity.
For each type of the singularity, the corresponding physics may be different. However,
usually it depends only on the vicinity of the singularity, and not on the rest of the
geometry of the space X. Therefore, in order to study the physics associated with a given
singularity, one can imagine isolating the local neighbourhood of the singular point and
studying it separately. This gives the so-called ‘local model’ of a singular point. This
procedure is similar to considering one gauge factor in the standard model gauge group,
rather than studying the whole theory at once. In this sence, non-compact manifolds
provide us with basic building blocks of low-energy energy physics that may appear in
compactifications on compact manifolds.

Here, we discuss a particular class of isolated singularities, namely conical singularies.
They correspond to degenerations of the metric on the space X of the form:

ds*(X) = dt* + t?ds*(Y), (4)

where a compact space Y is the base of the cone; the dimension of Y is one less than the
dimension of X. It is clear that X has an isolated singular point at the tip of the cone,
except for the special case when Y is a sphere, S*~!, with a round metric.

The conical singularities of the form (4) are among the simplest isolated singularities
one could study, see Figure 3. In fact, the first examples of non-compact manifolds with
G9 and Spin(7) holonomy, obtained by Bryant and Salamon [7] and, independently, by
Gibbons, Page, and Pope [8], exhibit precisely this type of degeneration. Specifically, the
complete metrics constructed in [7, 8] are smooth everywhere, and asymptotically look
like (4), for various base manifolds Y. Therefore, they can be considered as resolutions
of conical singularities. In Table 3 we list known asymptotically conical (AC) complete
metrics with Gy and Spin(7) holonomy that were originally found in [7, 8] and in more
recent literature [9, 10].



| Holonomy | Topology of X | Base Y |

S? x R? Ccp3
G- CP? xR® SU(3)/U(1)?
S xR SU(2) x SU(2)
St xR S0(5)/S0(3)
Spin(7) CP? x R? SU(3)/U(1)
S* x R?

Table 3: Asymptotically conical manifolds with G5 and Spin(7) holonomy.

The method of constructing G and Spin(7) metrics originally used in [7, 8] was es-
sentially based on the direct analysis of the Ricci-flatness equations,

R;; =0, (5)

for a particular metric ansatz. We will not go into details of this approach here since it
relies on finding the right form of the ansatz and, therefore, is not practical for general-
izations. Instead, following [11, 12], we will describe a very powerful approach, recently
developed by Hitchin [13], which allows to construct all the G5 and Spin(7) manifolds
listed in Table 3 (and many more !) in a systematic manner. Another advantage of this
method is that it leads to first-order differential equations, which are much easier than
the second-order Einstein equations (5).

Before we explain the basic idea of Hitchin’s construction, notice that for all of the AC
manifolds in Table 3 the base manifold Y is a homogeneous quotient space

Y = G/K, (6)

where G is some group and K C (G is a subgroup. Therefore, we can think of X as being
foliated by principal orbits G/K over a positive real line, R, , as shown on Figure 4. A
real variable t € R, in this picture plays the role of the radial coordinate; the best way
to see this is from the singular limit, in which the metric on X becomes exactly conical,
cf. eq. (4).

As we move along R, , the size and the shape of the principal orbit changes, but only
in a way consistent with the symmetries of the coset space G/K. In particular, at some
point the principal orbit G/K may collapse into a degenerate orbit,

B=G/H (7)

where symmetry requires
GODHDK (8)

At this point (which we denote ¢t = ty) the “radial evolution” stops, resulting in a non-
compact space X with a non-trivial topological cycle B, sometimes called a bolt. In other
words, the space X is contractible to a compact set B, and from the relation (8) we can
easily deduce that the normal space of B inside X is itself a cone on H/K. Therefore, in
general, the space X obtained in this way is a singular space, with a conical singularity
along the degenerate orbit B = G/H. However, if H/K is a round sphere, then the space
X is smooth,
H/K =S¥ = X smooth

This simply follows from the fact that the normal space of B inside X in such a case
is non-singular, R¥*! (= a cone over H/K). Tt is a good exercise to check that for all
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Figure 4: A non-compact space X can be viewed as a foliation by principal orbits Y = G/K. The
non-trivial cycle in X correspond to the degenerate orbit G/H, where G D H D K.

manifolds listed in Table 3, one indeed has H/K = S*, for some value of k. To show this,
one should first write down the groups G, H, and K, and then find H/K.

The representation of non-compact space X in terms of principal orbits, which are
homogeneous coset spaces is very useful. In fact, as we just explained, topology of X
simply follows from the group data (8). For example, if H/K = S* so that X is smooth,
we have

X =~ (G/H) x RF+? (9)

However, this structure can be also used to find a G-nvariant metric on X. In order to
do this, all we need to know are the groups G and K.

First, let us sketch the basic idea of Hitchin’s construction [13], and then explain the
details in some specific examples. For more details and further applications we refer the
reader to [11, 12]. We start with a principal orbit Y = G/K which can be, for instance,
the base of the conical manifold that we want to construct. Let P be the space of G-
invariant differential forms on Y. It turns out that there exists a symplectic structure on
P. This important result allows us to think of the space P as of the phase space of some
dynamical system:

P = Phase Space
w= Z dz; A dp; (10)

where we parametrised P by some coordinate variables x; and the conjugate momentum
variables p;.

Given a principal orbit G/K and a space of G-invariant forms on it, there is a canonical
construction of a Hamiltonian H(x;, p;) for our dynamical system, such that the Hamil-
tonian flow equations are equivalent to the special holonomy condition [13]:

de; __ 0 . .
ﬁ = a%H Special Holonomy Metric (11)
G = " om on (t1,12) x (G/K)

where the ‘time’ in the Hamiltonian system is identified with the radial variable ¢. Thus,
solving the Hamiltonian flow equations from ¢ = ¢; to t = 5 with a particular boundary
condition leads to the special holonomy metric on (t1,%3) x (G/K). Typically, one can
extend the boundaries of the interval (¢1,t;) where the solution is defined to infinity on



one side, and to a point ¢ = ¢y, where the principal orbit degenerates, on the other side.
Then, this gives a complete metric with special holonomy on a non-compact manifold X
of the form (9). Let us now illustrate these general ideas in more details in a concrete
example.

Example: Let us take G = SU(2)? and K = SU(2). We can form the following
natural sequence of subgroups:

G H K

I I I (12)
SU((2)* > SU((2)? > SU(2)

From the general formula (6) it follows that in this example we deal with a space X,
whose principal orbits are
y ~8%x§?
Furthermore, G/H = H/K = S? implies that X is a smooth manifold with topology
XS xR

In fact, X is one of the asymptotically conical manifolds listed in Table 3.
In order to find a G5 metric on this manifold, we need to construct the “phase space”,
P, that is the space of SU(2)3-invariant 3-forms and 4-forms on Y = G/K:

P = Q%(G/K) x Q¢(G/K)

In this example, it turns out that each of the factors is one-dimensional. Therefore,
we have only one “coordinate” x and its conjugate “momentum” p. Computing the
Hamiltonian H(z,p), we obtain the Hamiltonian flow equations:

p = z(xr—1)>2
T = p?

These first-order equations can be easily solved, and after a simple change of variables

lead to the explicit G5 metric on the spin bundle over S, originally found in [7, §]:

3 2\ 3

ds? = - _d::/TQ r Z(aa — N2+ 3; (1 - 72) > (00 + Ta)? (13)

a=1

3 Topology Change in M-theory

Notice, that all of the non-compact manifolds X with G5 or Spin(7) holonomy that we
discussed in section 2.2 have the form:

X = B x (contractible)

where B is a non-trivial cycle (a bolt), e.g. B = S%, S*, CP?, or something else. Therefore,
it is natural to ask: “What happens if Vol(B) — 0 ?” In this limit the geometry becomes
singular. Moreover, if we study string theory or M-theory on X, we might also expect to
see some new physics at the singularity, for example,
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Figure 5: Conifold transition in type IIB string theory.

e New massless objects
e Extra gauge symmetry
e Restoration of continuous/discrete symmetry

e Topology changing transition

In this section we will discuss the latter possibility, namely the situation when one can
go to a space with different topology. Although we are mostly interested in exceptional
holonomy manifolds, it is instructive to start with topology changing transitions in Calabi-
Yau manifolds, where one finds two prototypical examples:

The Flop is a transition between two geometries, where one two-cycle shrinks to a
point and a (topologically) different two-cycle grows. This process can be schematically
described by the diagram:

Sty — - — Sfy

This transition is smooth in string theory [14, 15].
The Conifold transition is another type of topology change, in which a three-cycle
shrinks and is replaced by a two-cycle:

S — . —§?

Ulike the flop, it is a real phase transition in the low-energy dynamics which can be
understood as the condensation of massless black holes [16, 17]. Let us briefly recall the
main arguments.

As the name indicates, the conifold is a cone over a five dimensional base space which
has topology S? x S? (see Figure 5). Two different ways to desingularize this space —
called the deformation and the resolution — correspond to replacing the singularity by
a finite size S* or S?, respectively. Thus, we have two different spaces, with topology
S? x R? and S? x R*, which asymptotically look the same.

In type IIB string theory, the two phases of the conifold geometry correspond to dif-
ferent branches in the four-dimensional N' = 2 low-energy effective field theory. In the
deformed conifold phase, D3-branes wrapped around the 3-sphere give rise to a low-energy
field ¢, with mass determined by the size of the S. In the effective four-dimensional su-
pergravity theory these states appear as heavy, point-like, extremal black holes. On the
other hand, in the resolved conifold phase the field ¢ acquires an expectation value reflect-
ing the condensation of these black holes. Of course, in order to make the transition from
one phase to the other, the field ¢ must become massless somewhere and this happens at
the conifold singularity, as illustrated in Figure 5.



Vol(S) .

Figure 6: Quantum moduli space of M-theory on G manifold X with topology S® x R*. Green lines
represent the ‘geometric moduli space’ parametrised by the volume of the S cycle, which is enlarged to
a smooth complex curve by taking into account C-field and quantum effects. The resulting moduli space
has three classical limits, which can be connected without passing through the point where geometry
becomes singular (represented by red dot in this picture).

Now, let us proceed to topology change in G5 manifolds. Here, again, one finds two
kinds of topology changing transitions, which resemble the flop and the conifold transitions
in Calabi-Yau manifolds:

G+ Flop is a transition where 3-cycle collapses and gets replaced by a (topologically)
different 3-cycle:

Sty — - — Siy

Note, that this is indeed very similar to the flop transition in Calabi-Yau manifolds,
where instead of a 2-cycle we have a 3-cycle shrinking. The physics is also similar, with
membranes playing the role of string world-sheet instantons. Remember, that the latter
were crucial for flop transition to be smooth in string theory. For a very similar reason,
G5 flop transition is smooth in M-theory. This was first realised by Acharya [18], and by
Atiyah, Maldacena, and Vafa [19], for a 7-manifold with topology

XS xR

and studied further by Atiyah and Witten [20]. In particular, they found that M-theory
on X has three classical branches, related by triality permutation symmetry, so that the
quantum moduli space looks as shown on Figure 6. Once again, important point is that
there is no singularity in quantum theory.

Let us proceed to another kind of topology changing transition in manifolds with G5
holonomy.

A Phase Transition, somewhat similar to a hybrid of the conifold and the G, flop
transition, can be found in M-theory on a (G5 manifold with topology

X 2 CP?x R®

A singularity develops when CP? cycle shrinks. As in the conifold transition, physics
of M-theory on this space also becomes singular at this point. Hence, this is a genuine
phase transition [20]. Note, however, that unlike the conifold transition in type IIB string
theory, this phase transition is not associated with condensation of any particle-like states
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Figure 7: Quantum moduli space of M-theory on G5 manifold X with topology CP? x R3. Green lines
represent the ‘geometric moduli space’ parametrised by the volume of the CP2 cycle, which is enlarged
to a singular complex curve by taking into account C-field and quantum effects. The resulting moduli
space has three classical limits. In order to go from one branch to another one necessarily has to pass
through the point where geometry becomes singular (represented by red dot in this picture).

in M-theory? on X. Indeed, there are no 4-branes in M-theory, which could result in
particle-like objects by wrapping around the collapsing CP? cycle.

Like the G, flop transition, this phase transition has three classical branches, which
are related by triality symmetry, see Figure 7. Important difference, of course, is that now
one can go from one branch to another only through the singular point. In this transition
one CP? cycle shrinks and another (topologically different) CP? cycle grows:

One way to see that this is indeed the right physics of M-theory on X is to reduce it to
type IIA theory with D6-branes in flat space-time [20].

Finally, we come to the last and the hardest case of holonomy groups, namely to
Spin(7) holonomy.

Spin(7) Conifold is the cone on SU(3)/U(1). It was conjectured in [10] that the
effective dynamics of M-theory on the Spin(7) conifold is analogous to that of type IIB
string theory on the usual conifold. Namely, Spin(7) cone on SU(3)/U(1) has two different
desingularizations, obtained by replacing the conical singularity either wither a 5-sphere
or with a CP?, see Figure 8. As a result, we obtain two different Spin(7) manifolds, with
topology

CP?> xR* and S°xR3
which are connected via topology changing transition
CP? — . — 8°

Moreover, as with the conifold transition [16, 17], the Spin(7) conifold has a nice
interpretation in terms of the low-energy effective field theory. Namely, the effective
dynamics of M-theory on the cone over SU(3)/U(1) is described by a three-dimensional
N =1 abelian Chern-Simons-Higgs theory. The Higgs field ¢ arises upon quantization of
the M5-brane wrapped over the S?. At the conifold point where the five-sphere shrinks,
these M5-branes become massless as suggested by the classical geometry. At this point,

2However, such interpretation can be given in type ITA string theory [10].
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Figure 8: Conifold transition in M-theory on a manifold with Spin(7) holonomy.

the theory may pass through a phase transition into the Higgs phase, associated with the
condensation of these five-brane states, see Figure 8.
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