One in a Billion: MSSM-like D-Brane Statistics

with Ralph Blumenhagen, Gabriele Honecker, Dieter Lüst and Timo Weigand

hep-th/0510170 and 0512190

Florian Gmeiner

Max Planck Institut für Physik
München

UNC, 02/02/06
Outline

1. Introduction
 - Motivation
 - Type II orientifold models

2. Methods of statistical analysis
 - Computer search
 - Number of solutions

3. Results
 - Full set of models
 - Searching for MSSM-like models
 - Results for Pati-Salam models
 - Statistics of the hidden sector
 - Gauge couplings
 - Correlations

4. Conclusions
1 Introduction

 Motivation

 Type II orientifold models

2 Methods of statistical analysis

 Computer search

 Number of solutions

3 Results

 Full set of models

 Searching for MSSM-like models

 Results for Pati-Salam models

 Statistics of the hidden sector

 Gauge couplings

 Correlations

4 Conclusions
Motivation

• **Statistical approach** to string vacuum problem

 [Ashok, Denef, Douglas, Shiffman, Zelditch; De Wolfe, Giryavets, Kachru, Taylor, Tripathi; Misra, Nanda; Conlon, Quevedo; Kumar, Wells; Dine, Gorbatov, Thomas, O’Neil, Sun; Dienes, Dudas, Gherghetta; Acharya, Denef, Valandro]

• Analysis of the **gauge sector** in a specific setup

• **Distribution** of SM-like properties in these models

• **Correlations** between observables
General setup

- Type IIB orientifold flux compactifications
- Analysis of the (\(\mathcal{N} = 1 \)) gauge sector
- RR/NSNS 3-form fluxes to freeze complex structure moduli and dilaton
- Add magnetized D-branes to cancel tadpoles and get chiral fermions
- In the special class of orbifolds we are considering the consistency conditions are well under control
T-dual picture

Type IIA/Ω̄σ with D6-branes at angles

- D-branes wrap sLag 3-cycles
- Symplectic basis: \((\alpha_I, \beta_I)\) of \(H_3(M, \mathbb{Z})\), where
 \(\alpha_I \in H_3^+(M)\) and \(\beta_I \in H_3^-(M)\)
- O6-planes:
 \[
 \pi_{O6} = \frac{1}{2} \sum_{I=1}^{b_3/2} L_I \alpha_I
 \]
- D6-branes:
 \[
 \begin{align*}
 \pi_a &= \sum_{I=1}^{b_3/2} (X_{a,I} \alpha_I + Y_{a,I} \beta_I), \\
 \pi'_a &= \sum_{I=1}^{b_3/2} (X_{a,I} \alpha_I - Y_{a,I} \beta_I)
 \end{align*}
 \]
Consistency conditions

Tadpole cancellation

\[b_3/2 = 1 + h_{21} \]

conditions:

\[\sum_{a=1}^{k} N_a X_{a,I} = L_I - L_{I,\text{flux}} \]

Supersymmetry conditions

- sLag condition: \(\mathcal{S}(\Omega_3)|_{\pi_a} = \sum_{I=1}^{b_3/2} Y_{a,I} F_I(U) = 0 \), where

\[F_I = \int_{\beta_I} \Omega_3 \]

- anti–branes: \(\mathcal{R}(\Omega_3)|_{\pi_a} = \sum_{I=1}^{b_3/2} X_{a,I} U_I > 0 \)
Consistency conditions

Tadpole cancellation

\[b_3/2 = 1 + h_{21} \] conditions:

\[\sum_{a=1}^{k} N_a X_{a,I} = L_I - L_{I,\text{flux}} \]

Supersymmetry conditions

- **sLag condition:**
 \[\mathcal{S}(\Omega_3)_{\pi_a} = \sum_{I=1}^{b_3/2} Y_{a,I} F_I(U) = 0, \] where
 \[F_I = \int_{\beta_I} \Omega_3 \]

- **anti-branes:**
 \[\mathcal{R}(\Omega_3)_{\pi_a} = \sum_{I=1}^{b_3/2} X_{a,I} U_I > 0 \]
K-theory constraints

\[\sum_{a} N_{a} Y_{0,a} \in 2\mathbb{Z} \]

- Number of solutions changes by a factor of 6
- Models which have an odd rank of the gauge group are suppressed
 \[\rightsquigarrow \text{rank-distribution changes. } (rk = \sum_{a} N_{a}) \]
We get chiral matter at the \textbf{intersection} of D-branes

\[I_{ab} = \pi_a \circ \pi_b \]
\[= \sum_I X_{a,I} Y_{b,I} - Y_{a,I} X_{b,I} \]

\[\rightsquigarrow I_{ab} \text{ chiral multiplets in a bifundamental } U(N_a) \times U(N_b) \text{ representation.} \]
Specific setup

Orbifold: $T^2 \times T^2 \times T^2 / \mathbb{Z}_2 \times \mathbb{Z}_2$

- $(h_{1,1}, h_{2,1}) = (51, 3)$
- Wrapping numbers $(n_I, m_I), I \in \{1, 2, 3\}$
- Tilted tori: $m_I \rightarrow m_I + b_I n_I$, $b_I \in \{1/2, 1\}$
- Define

$$X_0 = n_1 n_2 n_3, X_1 = -n_1 m_2 m_3, X_2 = -m_1 n_2 m_3, X_3 = -m_1 m_2 n_3,$$
$$Y_0 = m_1 m_2 m_3, Y_1 = -m_1 n_2 n_3, Y_2 = -n_1 m_2 n_3, Y_3 = -n_1 n_2 m_3,$$

satisfying

$$X_I Y_I = X_J Y_J \forall I, J, \quad X_I X_J = -Y_K Y_L,$$
$$X_L (Y_L)^2 = -X_I X_J X_K, \quad Y_L (X_L)^2 = -Y_I Y_J Y_K \quad I, J, K \text{ cyclic}$$
Constraints from consistency conditions

- **SUSY:**
 \[\sum_{I=0}^{3} Y_I U_I^{-1} = 0, \quad \text{ans} \quad \sum_{I=0}^{3} X_I U_I > 0, \]

- **Tadpole cancellation:**
 \[\sum_a N_a X_{a,I} = L_I, \quad I \in \{0..4\}, \]

- **Combined:**
 \[0 < \sum_{I=0}^{3} X_I U_I \leq \sum_{I=0}^{3} L_I U_I \]

In our models: \(L_0 = 8 - N_{flux} \); \(L_i = 8, \quad i \in \{1, 2, 3\} \).
\(\triangleright \) SUSY restricts the amount of admissible 3-form flux.
Constraints from consistency conditions

- **SUSY:**
 \[
 \sum_{I=0}^{3} Y_I U_I^{-1} = 0, \quad \text{ans} \quad \sum_{I=0}^{3} X_I U_I > 0,
 \]

- **Tadpole cancellation:**
 \[
 \sum_a N_a X_{a,I} = L_I, \quad I \in \{0..4\},
 \]

- **Combined:**
 \[
 0 < \sum_{I=0}^{3} X_I U_I \leq \sum_{I=0}^{3} L_I U_I
 \]

In our models: \(L_0 = 8 - N_{flux} \); \(L_i = 8 \), \(i \in \{1, 2, 3\} \).

\[\leadsto\] SUSY restricts the amount of admissible 3-form flux.
Constraints from consistency conditions

- **SUSY:**
 \[
 \sum_{I=0}^{3} Y_I U_I^{-1} = 0, \quad \text{ans} \quad \sum_{I=0}^{3} X_I U_I > 0,
 \]

- **Tadpole cancellation:**
 \[
 \sum_a N_a X_{a,I} = L_I, \quad I \in \{0..4\},
 \]

- **Combined:**
 \[
 0 < \sum_{I=0}^{3} X_I U_I \leq \sum_{I=0}^{3} L_I U_I
 \]

In our models: \(L_0 = 8 - N_{flux} \); \(L_i = 8, \quad i \in \{1, 2, 3\} \).

\(\approx \) SUSY restricts the amount of admissable 3-form flux.
One in a Billion: MSSM-like D-Brane Statistics

Florian Gmeiner

Introduction
Motivation
Models
Methods
Results
Conclusions

Constraints from consistency conditions

- **SUSY:**

 \[\sum_{I=0}^{3} Y_I U_I^{I-1} = 0, \text{ ans } \sum_{I=0}^{3} X_I U_I > 0, \]

- **Tadpole cancellation:**

 \[\sum_{a} N_a X_{a,I} = L_I, \text{ I } \in \{0..4\}, \]

- **Combined:**

 \[0 < \sum_{I=0}^{3} X_I U_I \leq \sum_{I=0}^{3} L_I U_I \]

In our models: \(L_0 = 8 - N_{flux}; \text{ } L_i = 8, \text{ } i \in \{1, 2, 3\}. \)

\(\rightsquigarrow \text{ SUSY restricts the amount of admissible 3-form flux.} \)
Introduction
Motivation
Type II orientifold models

Methods of statistical analysis
Computer search
Number of solutions

Results
Full set of models
Searching for MSSM-like models
Results for Pati-Salam models
Statistics of the hidden sector
Gauge couplings
Correlations

Conclusions
Analysis

Problem
Find solutions of diophantine equations of the form
\[\sum_{a=1}^{k} N_a X_a^I = L^I \]

Solution
1. Choose values for \(U_I \). Generate sets of \(X^I \) that fulfill SUSY conditions.
2. Count number of partitions \(\sum_{a=1}^{k} S_a = L^I U_I \).
3. Factorize \(S_a = N_a (X_a^I U_I) \) using values for the \(X_a \) from step 1.
4. Check if tadpole and K-theory conditions are fulfilled.
Analysis

Problem
Find solutions of diophantine equations of the form
\[\sum_{a=1}^{k} N_a X_a^I = L^I \]

Solution

1. Choose values for \(U_I \). Generate sets of \(X^I \) that fulfill SUSY conditions.
2. Count number of partitions \(\sum_{a=1}^{k} S_a = L^I U_I \).
3. Factorize \(S_a = N_a (X_a^I U_I) \) using values for the \(X_a \) from step 1.
4. Check if tadpole and K-theory conditions are fulfilled.
Computer search

Performed using a fast partition/factorization algorithm for natural numbers.

- With the help of a computer cluster (> 500 processors running for ≈ 6 months) all possible solutions (for a sufficient range of U_I) have been generated
 \[
 \text{⇒ almost complete classification of models on } T^6/\mathbb{Z}_2 \times \mathbb{Z}_2.
 \]
- In total $\sim 10^8$ models have been analysed
Counting solutions

- Susy and tadpole conditions allow only for three sets of X_I: Only stacks with 1, 2, or 4 non-vanishing X_I are possible.

- In the first two cases one can prove that the number of solutions is finite.

- In the last case we get $X_A = - \left(\sum_i \frac{U_A}{U_i X_i} \right)^{-1}$.

 \Rightarrow for a sufficient number of these branes the complex structures are fixed at rational values

 \[1 \leq X_i \leq \sum_{P=0}^{3} \frac{u_{P,2}u_{Q,1}u_{R,1}u_{S,1}L_P}{u_{i,2}u_{J,1}u_{K,1}u_{L,1}} \]

 \Rightarrow for fixed complex structures only a finite number of branes are admissible

- Computer analysis: number of solutions decreases rapidly for high values of the complex structures
Counting solutions

- Susy and tadpole conditions allow only for three sets of X_I: Only stacks with 1, 2, or 4 non-vanishing X_I are possible.

- In the first two cases one can prove that the number of solutions is finite.

- In the last case we get $X_A = -\left(\sum_i U_A U_i X_i\right)^{-1}$.

 \Rightarrow for a sufficient number of these branes the complex structures are fixed at rational values

\[
1 \leq X_i \leq \sum_{P=0}^{3} \frac{u_P,2u_Q,1u_R,1u_S,1L_P}{u_i,2u_J,1u_K,1u_L,1}
\]

 \Rightarrow for fixed complex structures only a finite number of branes are admissible

- **Computer analysis:** number of solutions decreases rapidly for high values of the complex structures
Counting solutions

- Susy and tadpole conditions allow only for three sets of X_I: Only stacks with 1, 2, or 4 non-vanishing X_I are possible.

- In the first two cases one can prove that the number of solutions is finite.

- In the last case we get $X_A = -\left(\sum_i \frac{U_A}{U_i X_i}\right)^{-1}$.

 \Rightarrow for a sufficient number of these branes the complex structures are fixed at rational values

 \[1 \leq X_i \leq \sum_{P=0}^{3} \frac{u_{P,2}u_{Q,1}u_{R,1}u_{S,1}L_P}{u_{i,2}u_{J,1}u_{K,1}u_{L,1}}\]

 \Rightarrow for fixed complex structures only a finite number of branes are admissible

- Computer analysis: number of solutions decreases rapidly for high values of the complex structures
Susy and tadpole conditions allow only for three sets of X_I: Only stacks with 1, 2, or 4 non-vanishing X_I are possible.

In the first two cases one can prove that the number of solutions is finite.

In the last case we get $X_A = - \left(\sum_i \frac{U_A}{U_i X_i} \right)^{-1}$.

\Rightarrow for a sufficient number of these branes the complex structures are fixed at rational values

$$1 \leq X_i \leq \sum_{P=0}^{3} \frac{u_{P,2} u_{Q,1} u_{R,1} u_{S,1} L_P}{u_{i,2} u_{J,1} u_{K,1} u_{L,1}}$$

\Rightarrow for fixed complex structures only a finite number of branes are admissible

Computer analysis: number of solutions decreases rapidly for high values of the complex structures
Counting solutions

Number of models computed depending on the absolute value of our complex structure variables.
1 Introduction
 Motivation
 Type II orientifold models

2 Methods of statistical analysis
 Computer search
 Number of solutions

3 Results
 Full set of models
 Searching for MSSM-like models
 Results for Pati-Salam models
 Statistics of the hidden sector
 Gauge couplings
 Correlations

4 Conclusions
Total rank distribution

- #models vs rank
- Bar chart showing the distribution of total ranks with bars for ranks 12.5 to 27.5 and 30.
One in a Billion: MSSM-like D-Brane Statistics

Florian Gmeiner

Introduction

Methods

Results

All models
MSSM
Pati-Salam
Hidden sector
Gauge couplings
Correlations

Conclusions

Distribution of U(M) gauge groups
As a measure for overall **chirality** we consider

\[\chi = \sum_{a > b} I_{a',b} - I_{a,b} = 2 \vec{Y}_a \cdot \vec{X}_b \]

Odd values for \(\chi \) are possible only from tilted tori.
Chirality distribution

Logarithmic plot of frequencies of given mean chirality.
Distribution of models with fixed rank and chirality.
Aim: Systematic investigation of distribution of vacua with standard model-like characteristics among set of SUSY solutions. \(\leadsto\) MSSM realized on 4 or 3 stacks of branes

- **4 stacks**: \(U(3)_a \times U(2)_b/Sp(2)_b \times U(1)_c \times U(1)_d\)

 QCD \(U(3)_a = SU(3)_{QCD} \times U(1)_a\)

 weak \(U(2)_b = SU(2)_w \times U(1)_b\)

 \(U(1)_Y: \) appropriate (massless) combination \(Q_Y = \sum x_i Q_i\)

- **3 stacks**: possible if \(x_c = x_d\) by dropping stack \(d\) in 4 stack solution
MSSM realizations

Aim: Systematic investigation of distribution of vacua with standard model-like characteristics among set of SUSY solutions. ⇔ MSSM realized on 4 or 3 stacks of branes

- **4 stacks:** \(U(3)_a \times U(2)_b / Sp(2)_b \times U(1)_c \times U(1)_d \)
 - QCD \(U(3)_a = SU(3)_{QCD} \times U(1)_a \)
 - weak \(U(2)_b = SU(2)_w \times U(1)_b \)
 - \(U(1)_Y \): appropriate (massless) combination \(Q_Y = \sum x_i Q_i \)

- **3 stacks:** possible if \(x_c = x_d \) by dropping stack \(d \) in 4 stack solution
We want a **chiral spectrum** on intersections of MSSM branes

\[
\#(N_a, N_b) = \pi_a \circ \pi_b
\]

\[
\#\text{Anti}_a = \frac{1}{2}(\pi_a \circ \pi_a' + \pi_a \circ \pi O6)
\]

\[
\#\text{Sym}_a = \frac{1}{2}(\pi_a \circ \pi_a' - \pi_a \circ \pi O6)
\]

\implies \text{systematic realization of MSSM quantum numbers}
Anomaly considerations

- Freedom of non-abelian anomalies guaranteed by RR-tadpole cancellation
- $U(1)_a - SU(N_b)^2$ mixed anomalies cancelled by GS mechanism, but have to make sure that specific realization of $U(1)_Y = \sum x_i U(1)_i$ is anomaly free and does not receive mass by GS-coupling, i.e.

$$\sum_a x_a N_a Y_I^a = 0, \quad I = 0, \ldots, 3$$
No MSSM configurations with three generations and massless $U(1)$ have been found in the analysed data.

Reason: All known solutions work with values for the complex structure which is outside the range we considered.

These models are statistically highly suppressed.
Number of models found for MSSM configurations (red), allowing for a massive $U(1)$ (blue).
In addition we consider possible Pati-Salam models with gauge group

\[SU(4) \times SU(2)_L \times SU(2)_R \]

- **Condition:** Intersection numbers between SU(4) and both SU(2) stacks have to be equal
- **Number of generations:** We did **not** see three generation models (for the same reason as in the MSSM case)

[see e.g. Cvetic et al.]
Distribution of generations

Number of models found for Pati-Salam configurations.
Besides the standard model or Pati-Salam gauge group we have in general a hidden sector

\[G = G_{SM} \oplus H. \]

Question

Are the distributions in the hidden sector different from the distributions in the full set of models?

Answer

No, they are not. The distribution of gauge group factors or chirality in the hidden sector of standard model or Pati-Salam configurations is basically the same as in the full set of models. Some properties of our models might be generic in the sense that they do not depend on the constraints for the visible sector.
Hidden sector

Question
Are the distributions in the hidden sector different from the distributions in the full set of models?

Answer
No, they are not. The distribution of gauge group factors or chirality in the hidden sector of standard model or Pati-Salam configurations is basically the same as in the full set of models.

⇝ Some properties of our models might be generic in the sense that they do not depend on the constraints for the visible sector.
Hidden sector

Question
Are the distributions in the hidden sector different from the distributions in the full set of models?

Answer
No, they are not. The distribution of gauge group factors or chirality in the hidden sector of standard model or Pati-Salam configurations is basically the same as in the full set of models.

Some properties of our models might be generic in the sense that they do not depend on the constraints for the visible sector.
Rank distribution in the hidden sector

Black boxes: All models, red stars: MSSM (massless $U(1)$), green diamonds: MSSM (all $U(1)$), blue triangles: Pati-Salam.
$U(M)$ distribution in the hidden sector

Black boxes: All models, red stars: MSSM (massless $U(1)$), green diamonds: MSSM (all $U(1)$), blue triangles: Pati-Salam.
Form top-left to bottom-right: All models, MSSM-like, massive MSSM, Pati-Salam.
So far we considered properties of the models which are topological, in the sense that they depend on the brane configuration only. A geometric quantity one might consider are the gauge couplings α_s, α_w and α_Y.

In principle they should be considered at low energy, but this would imply that we use the renormalization group to evolve them down from their values at the string scale.

We do not do this, but consider their string-scale values just to get some hints about their behaviour.
Gauge couplings

Calculation of the gauge couplings

\[
\frac{1}{\alpha_a} = \frac{c}{\kappa_a} \hat{\beta} \sqrt{\prod_{i=1}^{3} R_1^{(i)} R_2^{(i)}} \sum_{I=0}^{3} \hat{X}^I U_I,
\]

with some normalization constant \(c = \frac{1}{2\sqrt{2}} \frac{M_{\text{Planck}}}{M_s} \) and \(\kappa_a \in \{1, 2\} \), depending if we have a \(U(N) \) or \(SO(N) \) stack. \textbf{Note:} Explicit dependence on the complex structure.

Conjecture about relations

There exists a conjecture that (most) intersecting brane models should obey the relation

\[
\frac{1}{\alpha_Y} = \frac{2}{3} \frac{1}{\alpha_s} + \frac{1}{\alpha_w}.
\]

[Blumenhagen, Stieberger, Lüst]
Gauge couplings

Calculation of the gauge couplings

\[
\frac{1}{\alpha_a} = \frac{c}{\kappa_a} \sqrt{\frac{1}{\prod_{i=1}^{3} R_1^{(i)} R_2^{(i)} R_3^{(i)}}} \sum_{I=0}^{3} \hat{X}^I U_I,
\]

with some normalization constant \(c = \frac{1}{2\sqrt{2}} \frac{M_{Planck}}{M_s} \) and \(\kappa_a \in \{1, 2\} \), depending if we have a \(U(N) \) or \(SO(N) \) stack.

Note: Explicit dependence on the complex structure.

Conjecture about relations

There exists a conjecture that (most) intersecting brane models should obey the relation

\[
\frac{1}{\alpha_Y} = \frac{2}{3} \frac{1}{\alpha_s} + \frac{1}{\alpha_w}.
\]

[Blumenhagen, Stieberger, Lüst]
Distribution of α_s/α_w
The Weinberg angle $\sin^2 \theta$ is given by

$$\sin^2 \theta = \frac{\alpha_Y}{\alpha_w + \alpha_Y}.$$

If the conjectured relation between the coupling constants is correct we would have the following relation between $\sin^2 \theta$ and α_s/α_w

$$\sin^2 \theta = \frac{3}{2} \frac{1}{\alpha_w/\alpha_s + 3}.$$

Result

88% of all models fulfill this relation.
The Weinberg angle $\sin^2 \theta$ is given by

$$\sin^2 \theta = \frac{\alpha_Y}{\alpha_w + \alpha_Y}.$$

If the conjectured relation between the coupling constants is correct we would have the following relation between $\sin^2 \theta$ and α_s/α_w

$$\sin^2 \theta = \frac{3}{2} \frac{1}{\alpha_w/\alpha_s + 3}.$$

Result

88% of all models fulfill this relation.
Values for $\sin^2 \theta$

Logarithmic plot of α_s/α_w against $\sin^2 \theta$. Each dot represents a class of models with the same values. The conjectured relation is shown as a red curve.
Question

Are the atomic properties of the models (like existence of certain gauge groups, total rank, chirality, etc.) correlated?

Answer

Yes, some of them are, but only global properties, for example the mean chirality and the total rank of the gauge group.
Question

Are the atomic properties of the models (like existence of certain gauge groups, total rank, chirality, etc.) correlated?

Answer

Yes, some of them are, but only global properties, for example the mean chirality and the total rank of the gauge group.
Conjecture

Correlations between different constraining properties are very small. If this is true, it would be possible to make predictions about the probability to find models with specific properties without constructing them.

How to check this?

Calculate correlation between different properties

\[
\frac{|P(1 \land 2) - P(1)P(2)|}{P(1 \land 2) + P(1)P(2)}
\]
Correlations

Conjecture

Correlations between different constraining properties are very small. If this is true, it would be possible to make predictions about the probability to find models with specific properties without constructing them.

How to check this?
Calculate correlation between different properties

\[
\left| \frac{P(1 \land 2) - P(1)P(2)}{P(1 \land 2) + P(1)P(2)} \right|
\]
Correlations between the existence of $U(3)$ and $U(2)/Sp(2)$ gauge groups.
Using this we can try to estimate the number of standard models with three generations in the complete setup, although we have not explicitly constructed a single one.

<table>
<thead>
<tr>
<th>Restriction</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>gauge factor $U(3)$</td>
<td>0.0816</td>
</tr>
<tr>
<td>gauge factor $U(2)/Sp(2)$</td>
<td>0.992</td>
</tr>
<tr>
<td>No symmetric representations</td>
<td>0.839</td>
</tr>
<tr>
<td>Massless $U(1)_Y$</td>
<td>0.423</td>
</tr>
<tr>
<td>Three generations of quarks</td>
<td>2.92×10^{-5}</td>
</tr>
<tr>
<td>Three generations of leptons</td>
<td>1.62×10^{-3}</td>
</tr>
<tr>
<td>Total</td>
<td>1.3×10^{-9}</td>
</tr>
</tbody>
</table>

(matches with Gepner model constructions from Schellekens et.al.)
Using this we can try to estimate the number of standard models with three generations in the complete setup, although we have not explicitly constructed a single one.

<table>
<thead>
<tr>
<th>Restriction</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>gauge factor $U(3)$</td>
<td>0.0816</td>
</tr>
<tr>
<td>gauge factor $U(2)/Sp(2)$</td>
<td>0.992</td>
</tr>
<tr>
<td>No symmetric representations</td>
<td>0.839</td>
</tr>
<tr>
<td>Massless $U(1)_Y$</td>
<td>0.423</td>
</tr>
<tr>
<td>Three generations of quarks</td>
<td>2.92×10^{-5}</td>
</tr>
<tr>
<td>Three generations of leptons</td>
<td>1.62×10^{-3}</td>
</tr>
<tr>
<td>Total</td>
<td>1.3×10^{-9}</td>
</tr>
</tbody>
</table>

(matches with Gepner model constructions from Schellekens et.al.)
Estimates

Question
How good is this estimate?

Compare with estimates done in the same way for models with 2 or 4 generations, where we have exact results.

<table>
<thead>
<tr>
<th># generations</th>
<th># of models found</th>
<th>estimated #</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>162921</td>
<td>188908</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>4</td>
<td>3898</td>
<td>3310</td>
</tr>
</tbody>
</table>

Answer
Estimates are better then expected (given the fact that we ignore correlations, which we can not even quantify...)

Estimates

Question
How good is this estimate?

Compare with estimates done in the same way for models with 2 or 4 generations, where we have exact results.

<table>
<thead>
<tr>
<th># generations</th>
<th># of models found</th>
<th>estimated #</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>162921</td>
<td>188908</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>4</td>
<td>3898</td>
<td>3310</td>
</tr>
</tbody>
</table>

Answer
Estimates are better then expected (given the fact that we ignore correlations, which we can not even quantify...
Question

How good is this estimate?

Compare with estimates done in the same way for models with 2 or 4 generations, where we have exact results.

<table>
<thead>
<tr>
<th># generations</th>
<th># of models found</th>
<th>estimated #</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>162921</td>
<td>188908</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>4</td>
<td>3898</td>
<td>3310</td>
</tr>
</tbody>
</table>

Answer

Estimates are better than expected (given the fact that we ignore correlations, which we cannot even quantify...).
1 Introduction
 Motivation
 Type II orientifold models

2 Methods of statistical analysis
 Computer search
 Number of solutions

3 Results
 Full set of models
 Searching for MSSM-like models
 Results for Pati-Salam models
 Statistics of the hidden sector
 Gauge couplings
 Correlations

4 Conclusions
Conclusions

Summary

- Standard model configurations are heavily suppressed from a statistical point of view.
- There exist non-trivial overall statistical correlations between physical observables.
- The constraining properties of realistic models are quite uncorrelated.

⇝ features of distributions of sm-properties can be estimated without explicit calculation.

Outlook

- Results should be compared with gauge sector from dual theories (M-theory, heterotic).
- Generated data can also be used to look for unified models (e.g SU(5)).
Conclusions

Summary

- Standard model configurations are heavily suppressed from a statistical point of view.
- There exist non-trivial overall statistical correlations between physical observables.
- The constraining properties of realistic models are quite uncorrelated.
 \[\rightsquigarrow\] features of distributions of SM-properties can be estimated without explicit calculation.

Outlook

- Results should be compared with gauge sector from dual theories (M-theory, heterotic).
- Generated data can also be used to look for unified models (e.g. SU(5)).
Thank you!