One in a
Billion:
MSSM-like
D-Brane
Statistics
Florian
Gmeiner

One in a Billion: MSSM-like D-Brane Statistics

with Ralph Blumenhagen, Gabriele Honecker, Dieter Lüst and Timo Weigand

Florian Gmeiner

Max Planck Institut für Physik
München

UNC, 02/02/06

Outline

One in a
Billion:
MSSM-like
D-Brane
Statistics
Florian
Gmeiner
(1) Introduction

Motivation
Type II orientifold models
(2) Methods of statistical analysis

Computer search
Number of solutions
(3) Results

Full set of models
Searching for MSSM-like models
Results for Pati-Salam models
Statistics of the hidden sector
Gauge couplings
Correlations
(4) Conclusions

One in a Billion: MSSM-like D-Brane Statistics

Florian
Gmeiner

Introduction Motivation Models

Nethod's

Results
Conclusions
(1) Introduction

Motivation

 Type II orientifold models```
(2) Methods of statistical analysis
 Computer search
 Number of solutions
(3) Results
 Full set of models
 Searching for MSSM-like models
 Results for Pati-Salam models
 Statistics of the hidden sector
 Gauge couplings
 Correlations
```

(4) Conclusions

One in a Billion:
MSSM-like D-Brane Statistics

Florian Gmeiner

Introduction Motivation Models

Methods

- Statistical approach to string vacuum problem
[Ashok, Denef, Douglas, Shiffman, Zelditch; De Wolfe, Giryavets, Kachru, Taylor, Tripathi; Misra,
Nanda; Conlon, Quevedo; Kumar, Wells; Dine, Gorbatov, Thomas, O'Neil, Sun; Dienes, Dudas,
Gherghetta; Acharya, Denef, Valandro]
- Analysis of the gauge sector in a specific setup
- Distribution of SM-like properties in these models
- Correlations between observables


## General setup

One in a
Billion:
MSSM-like
D-Brane
Statistics
Florian

- Type IIB orientifold flux compactifications
- Analysis of the $(\mathcal{N}=1)$ gauge sector
- RR/NSNS 3-form fluxes to freeze complex structure moduli and dilaton
- Add magnetized D-branes to cancel tadpoles and get chiral fermions
- In the special class of orbifolds we are considering the consistency conditions are well under control


## T-dual picture

One in a
Billion:
MSSM-like
D-Brane
Statistics
Florian Gmeiner

- O6-planes:

$$
\pi_{\mathrm{O} 6}=\frac{1}{2} \sum_{I=1}^{b_{3} / 2} L_{I} \alpha_{I}
$$

- D6-branes:

$$
\begin{aligned}
\pi_{a} & =\sum_{I=1}^{b_{3} / 2}\left(X_{a, I} \alpha_{I}+Y_{a, I} \beta_{I}\right) \\
\pi_{a}^{\prime} & =\sum_{I=1}^{b_{3} / 2}\left(X_{a, I} \alpha_{I}-Y_{a, I} \beta_{I}\right)
\end{aligned}
$$

## Consistency conditions

One in a Billion: MSSM-like D-Brane Statistics

Florian
Gmeiner

Introduction
Motivation
Models
Methods
Results
Conclusions

Tadpole concellation
$b_{3} / 2=1+h_{21}$ conditions:

$$
\sum_{a=1}^{k} N_{a} X_{a, I}=L_{I}-L_{I, f l u x}
$$

## Consistency conditions

One in a
Billion:
MSSM-like
D-Brane
Statistics
Florian
Gmeiner

Introduction
Motivation
Models
Methods Results

## Tadpole concellation

$b_{3} / 2=1+h_{21}$ conditions:

$$
\sum_{a=1}^{k} N_{a} X_{a, I}=L_{I}-L_{I, f l u x}
$$

## Supersymmetry conditions

- sLag condition: $\left.\Im\left(\Omega_{3}\right)\right|_{\pi_{a}}=\sum_{I=1}^{b_{3} / 2} Y_{a, I} F_{I}(U)=0, \quad$ where

$$
F_{I}=\int_{\beta_{I}} \Omega_{3}
$$

- anti-branes: $\left.\Re\left(\Omega_{3}\right)\right|_{\pi_{a}}=\sum_{I=1}^{b_{3} / 2} X_{a, I} U_{I}>0$


## Consistency conditions

One in a
Billion:
MSSM-like
D-Brane
Statistics
Florian
Gmeiner
K-theory constraints

$$
\sum_{a} N_{a} Y_{0, a} \in 2 \mathbb{Z}
$$

- Number of solutions changes by a factor of 6
- Models which have an odd rank of the gauge group are suppressed
$\rightsquigarrow$ rank-distribution changes. $\left(r k=\sum_{a} N_{a}\right)$


## Chiral matter

One in a
Billion:
MSSM-like
D-Brane
Statistics
Florian
Gmeiner

Introduction
Motivation
Models
Methods
Results
Conclusions

We get chiral matter at the intersection of D-branes

$$
\begin{aligned}
I_{a b} & =\pi_{a} \circ \pi_{b} \\
& =\sum_{I} X_{a, I} Y_{b, I}-Y_{a, I} X_{b, I}
\end{aligned}
$$

$\rightsquigarrow I_{a b}$ chiral multiplets in a bifundamental $U\left(N_{a}\right) \times U\left(N_{b}\right)$ representation.

## Specific setup

One in a
Billion:
MSSM-like
D-Brane
Statistics
Florian
Gmeiner

Introduction
Motivation
Models
Methods
Results
Conclusions

Orbifold: $T^{2} \times T^{2} \times T^{2} / \mathbb{Z}_{2} \times \mathbb{Z}_{2}$
[Cvetic, Shiu, Uranga]

- $\left(h_{1,1}, h_{2,1}\right)=(51,3)$
- Wrapping numbers $\left(n_{I}, m_{I}\right), I \in\{1,2,3\}$
- Tilted tori: $m_{I} \rightarrow m_{I}+b_{I} n_{I}, \quad b_{I} \in\{1 / 2,1\}$
- Define

$$
\begin{aligned}
& X_{0}=n_{1} n_{2} n_{3}, X_{1}=-n_{1} m_{2} m_{3}, X_{2}=-m_{1} n_{2} m_{3}, X_{3}=-m_{1} m_{2} n_{3}, \\
& Y_{0}=m_{1} m_{2} m_{3}, Y_{1}=-m_{1} n_{2} n_{3}, Y_{2}=-n_{1} m_{2} n_{3}, Y_{3}=-n_{1} n_{2} m_{3},
\end{aligned}
$$

satisfying

$$
\begin{aligned}
& X_{I} Y_{I}=X_{J} Y_{J} \forall I, J, \quad X_{I} X_{J}=-Y_{K} Y_{L} \\
& X_{L}\left(Y_{L}\right)^{2}=-X_{I} X_{J} X_{K}, \quad Y_{L}\left(X_{L}\right)^{2}=-Y_{I} Y_{J} Y_{K} \quad I, J, K \text { cyclic }
\end{aligned}
$$

## Constraints from consistency conditions

One in a Billion: MSSM-like D-Brane Statistics

Florian
Gmeiner

Introduction
Motivation
Models
Methods
Results
Conclusions

- SUSY:

$$
\sum_{I=0}^{3} Y_{I} U_{I}^{-1}=0, \quad \text { ans } \quad \sum_{I=0}^{3} X_{I} U_{I}>0
$$

## - Tadpole cancellation

- Combined:


## Constraints from consistency conditions

One in a Billion:
MSSM-like
D-Brane
Statistics
Florian
Gmeiner

Introduction
Motivation
Models
Methods
Results
Conctusions

- SUSY:

$$
\sum_{I=0}^{3} Y_{I} U_{I}^{-1}=0, \quad \text { ans } \quad \sum_{I=0}^{3} X_{I} U_{I}>0
$$

- Tadpole cancellation:

$$
\sum_{a} N_{a} X_{a, I}=L_{I}, \quad I \in\{0 . .4\}
$$

- Combined:


In our models: $L_{0}=8-N_{\text {flux }}$;
$\leadsto$ SIISY restricts the amount of admissable 3-form flux.

## Constraints from consistency conditions

One in a
Billion:
MSSM-like
D-Brane
Statistics
Florian
Gmeiner

Introduction
Motivation
Models
Methods
Results
Conclusions

- SUSY:

$$
\sum_{I=0}^{3} Y_{I} U_{I}^{-1}=0, \quad \text { ans } \quad \sum_{I=0}^{3} X_{I} U_{I}>0
$$

- Tadpole cancellation:

$$
\sum_{a} N_{a} X_{a, I}=L_{I}, \quad I \in\{0 . .4\}
$$

- Combined:

$$
0<\sum_{I=0}^{3} X_{I} U_{I} \leq \sum_{I=0}^{3} L_{I} U_{I}
$$

In our models: $L_{0}=8-N_{\text {flux }}$;
$\leadsto$ SUSY restricts the amount of admissable 3-form flux.

## Constraints from consistency conditions

One in a
Billion:
MSSM-like
D-Brane
Statistics
Florian
Gmeiner

Introduction

- SUSY:

$$
\sum_{I=0}^{3} Y_{I} U_{I}^{-1}=0, \quad \text { ans } \quad \sum_{I=0}^{3} X_{I} U_{I}>0
$$

- Tadpole cancellation:

$$
\sum_{a} N_{a} X_{a, I}=L_{I}, \quad I \in\{0 . .4\}
$$

- Combined:

$$
0<\sum_{I=0}^{3} X_{I} U_{I} \leq \sum_{I=0}^{3} L_{I} U_{I}
$$

In our models: $L_{0}=8-N_{\text {flux }} ; \quad L_{i}=8, \quad i \in\{1,2,3\}$.
$\rightsquigarrow$ SUSY restricts the amount of admissable 3-form flux.

One in a Billion: MSSM-like D-Brane Statistics

Florian
Gmeiner

Introduction
Methods
Computer search
Number of solutions

Results
Conclusions
(1) Introduction

Motivation
Type II orientifold models
(2) Methods of statistical analysis

Computer search Number of solutions
(3) Results

Full set of models
Searching for MSSM-like models
Results for Pati-Salam models
Statistics of the hidden sector
Gauge couplings
Correlations
(4) Conclusions

## Analysis

One in a Billion: MSSM-like D-Brane Statistics

Florian Gmeiner

Problem
Find solutions of diophantine equations of the form

$$
\sum_{a=1}^{k} N_{a} X_{a}^{I}=L^{I}
$$

(1) Choose values for $U_{I}$. Generate sets of $X^{I}$ that fulfill SUSY conditions.
(2) Count number of partitions $\sum_{a=1}^{k} S_{a}=L^{I} U_{I}$.
(3) Factorize $S_{a}=N_{a}\left(X_{a}^{I} U_{I}\right)$ using values for the $X_{a}$ from (4) Check if tadpole and K-theory conditions are fulfilled.

## Analysis

One in a
Billion:
MSSM-like
D-Brane
Statistics
Florian
Gmeiner

Introduction
Methods

## Solution

(1) Choose values for $U_{I}$. Generate sets of $X^{I}$ that fulfill SUSY conditions.
(2) Count number of partitions $\sum_{a=1}^{k} S_{a}=L^{I} U_{I}$.
(3) Factorize $S_{a}=N_{a}\left(X_{a}^{I} U_{I}\right)$ using values for the $X_{a}$ from step 1.
(4) Check if tadpole and K-theory conditions are fulfilled.

## Computer search

One in a
Billion:
MSSM-like
D-Brane
Statistics
Florian
Gmeiner
Performed using a fast partition/factorization algorithm for natural numbers.

- With the help of a computer cluster ( $>500$ processors running for $\approx 6$ months) all possible solutions (for a sufficient range of $U_{I}$ ) have been generated
$\rightsquigarrow$ almost complete classification of models on $T^{6} / \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
- In total $\sim 10^{8}$ models have been analysed


## Counting solutions

One in a
Billion:
MSSM-like
D-Brane
Statistics
Florian
Gmeiner

Introduction
Methods
Number of solutions

- Susy and tadpole conditions allow only for three sets of $X_{I}$ : Only stacks with 1, 2 , or 4 non-vanishing $X_{I}$ are possible.

In the first two cases one can prove that the number of solutions is finite. In the last case we get $X_{A}=-\left(\sum_{i} \frac{U_{A}}{U_{i} X_{i}}\right)$ $\rightsquigarrow$ for a sufficient number of these branes the complex structures are fixed at rational values $\leadsto$ for fixed complex structures only a finite number of hranes are admiscihle

## Counting solutions

One in a
Billion:
MSSM-like
D-Brane Statistics

Florian
Gmeiner

- Susy and tadpole conditions allow only for three sets of $X_{I}$ : Only stacks with 1, 2 , or 4 non-vanishing $X_{I}$ are possible.
- In the first two cases one can prove that the number of solutions is finite.



## Counting solutions

One in a
Billion:
MSSM-like
D-Brane
Statistics
Florian
Gmeiner

- Susy and tadpole conditions allow only for three sets of $X_{I}$ : Only stacks with 1, 2 , or 4 non-vanishing $X_{I}$ are possible.
- In the first two cases one can prove that the number of solutions is finite.
- In the last case we get $X_{A}=-\left(\sum_{i} \frac{U_{A}}{U_{i} X_{i}}\right)^{-1}$.
$\rightsquigarrow$ for a sufficient number of these branes the complex structures are fixed at rational values

$$
1 \leq X_{i} \leq \sum_{P=0}^{3} \frac{u_{P, 2} u_{Q, 1} u_{R, 1} u_{S, 1} L_{P}}{u_{i, 2} u_{J, 1} u_{K, 1} u_{L, 1}}
$$

$\rightsquigarrow$ for fixed complex structures only a finite number of branes are admissible


## Counting solutions

One in a
Billion:
MSSM-like
D-Brane
Statistics
Florian
Gmeiner

- Susy and tadpole conditions allow only for three sets of $X_{I}$ : Only stacks with 1,2 , or 4 non-vanishing $X_{I}$ are possible.
- In the first two cases one can prove that the number of solutions is finite.
- In the last case we get $X_{A}=-\left(\sum_{i} \frac{U_{A}}{U_{i} X_{i}}\right)^{-1}$.
$\rightsquigarrow$ for a sufficient number of these branes the complex structures are fixed at rational values

$$
1 \leq X_{i} \leq \sum_{P=0}^{3} \frac{u_{P, 2} u_{Q, 1} u_{R, 1} u_{S, 1} L_{P}}{u_{i, 2} u_{J, 1} u_{K, 1} u_{L, 1}}
$$

$\rightsquigarrow$ for fixed complex structures only a finite number of branes are admissible

- Computer analysis: number of solutions decreases rapidly for high values of the complex structures


## Counting solutions

One in a
Billion:
MSSM-like
D-Brane
Statistics
Florian
Gmeiner

Introduction
Method's
Computer search
Number of solutions

Results
Conclusions


Number of models computed depending on the absolute value of our complex structure variables.

One in a
Billion:
MSSM-like
D-Brane
Statistics
Florian
Gmeiner

Introduction
Methods
Results
All.models
MSSM
Pati-Salam
Hidden secto
Gauge couplings
Correlations

## (1) Introduction <br> Motivation <br> Type II orientifold models <br> (2) Methods of statistical analysis Computer search Number of solutions

(3) Results

Full set of models
Searching for MSSM-like models
Results for Pati-Salam models
Statistics of the hidden sector
Gauge couplings
Correlations
(4) Conclusions

## Total rank distribution

One in a Billion: MSSM-like D-Brane Statistics

Florian
Gmeiner

Introduction
Methods

## Result

All models
MSSM
Pati-Salam
Hidden sector
Gauge couplings
Correlations
Conclusions
\#models


## Distribution of $\mathrm{U}(\mathrm{M})$ gauge groups

One in a Billion: MSSM-like D-Brane Statistics

Florian Gmeiner

Introduction
Methods
Results
All models
MSSM
Pati-Salam
Hidden sector
Gauge coupling
Correlations
Conclusions
\#models


## Chirality

One in a
Billion:
MSSM-like
D-Brane Statistics

Florian
Gmeiner

Introduction
Methods
Results
All models
MSSM
Pati-Salam
Hidden sector
Gauge coupling Correlations

Conclusions

- As a measure for overall chirality we consider

$$
\chi=\sum_{a>b} I_{a^{\prime}, b}-I_{a, b}=2 \vec{Y}_{a} \vec{X}_{b}
$$

- Odd values for $\chi$ are possible only from tilted tori.


## Chirality distribution

One in a Billion: MSSM-like D-Brane Statistics

Florian Gmeiner

Introduction
Methods
Results
All models
MSSM
Pati-Salam
Hidden secto
Gauge couplings
Correlations
Conclusions
$\log (\mathrm{P}($ chi) $)$


Logarithmic plot of frequencies of given mean chirality.

## Rank vs chirality

One in a
Billion:
MSSM-like
D-Brane
Statistics
Florian
Gmeiner

Introduction
Methods
Results
All models
MSSM
Pati-Salam
Hidden sector
Gauge couplings
Correlations
Conclusions


Distribution of models with fixed rank and chirality.

## MSSM realizations

One in a
Billion:
MSSM-like
D-Brane Statistics

Florian
Gmeiner

Introduction
Methods
Results
All models
MSSM
Pati-Salam
Hidden sector
Gauge coupling Correlations

Aim: Systematic investigation of distribution of vacua with standard model-like characteristics among set of SUSY solutions. $\rightsquigarrow$ MSSM realized on 4 or 3 stacks of branes


## MSSM realizations

One in a
Billion:
MSSM-like
D-Brane
Statistics
Florian
Gmeiner

Aim: Systematic investigation of distribution of vacua with standard model-like characteristics among set of SUSY solutions. $\rightsquigarrow$ MSSM realized on 4 or 3 stacks of branes

- 4 stacks: $U(3)_{a} \times U(2)_{b} / S p(2)_{b} \times U(1)_{c} \times U(1)_{d}$ QCD $U(3)_{a}=S U(3)_{Q C D} \times U(1)_{a}$ weak $U(2)_{b}=S U(2)_{w} \times U(1)_{b}$ $U(1)_{Y}$ : appropriate (massless) combination $Q_{Y}=\sum x_{i} Q_{i}$
- 3 stacks: possible if $x_{c}=x_{d}$ by dropping stack $d$ in 4 stack solution


## Additional constraints

One in a
Billion:
MSSM-like
D-Brane
Statistics
Florian
Gmeiner
We want a chiral spectrum on intersections of MSSM branes

$$
\begin{aligned}
\#\left(N_{a}, \overline{N_{b}}\right) & =\pi_{a} \circ \pi_{b} \\
\# \mathrm{Anti}_{a} & =\frac{1}{2}\left(\pi_{a} \circ \pi_{a^{\prime}}+\pi_{a} \circ \pi_{O 6}\right) \\
\# \text { Sym }_{a} & =\frac{1}{2}\left(\pi_{a} \circ \pi_{a^{\prime}}-\pi_{a} \circ \pi_{O 6}\right)
\end{aligned}
$$

$\rightsquigarrow$ systematic realization of MSSM quantum numbers

## Anomaly considerations

One in a
Billion:
MSSM-like
D-Brane
Statistics
Florian
Gmeiner

- Freedom of non-abelian anomalies guaranteed by RRtadpole cancellation
- $U(1)_{a}-S U\left(N_{b}\right)^{2}$ mixed anomalies cancelled by GS mechanism, but have to make sure that specific realization of $U(1)_{Y}=\sum x_{i} U(1)_{i}$ is anomaly free and does not receive mass by GS-coupling, i.e.

$$
\sum_{a} x_{a} N_{a} Y_{I}^{a}=0, \quad I=0, \ldots, 3
$$

## Number of generations

One in a
Billion:
MSSM-like
D-Brane
Statistics
Florian
Gmeiner

- No MSSM configurations with three generations and massless $U(1)$ have been found in the analysed data.
- Reason: All known solutions work with values for the complex structure which is outside the range we considered.
- $\rightsquigarrow$ These models are statistically highly suppressed.


## Distribution of generations

One in a Billion: MSSM-like
D-Brane
Statistics
Florian
Gmeiner

Introduction
Methods

## Results

All models
MSSM
Pati-Salam
Hidden secto
Gauge couplings
Correlations
Conclusions


Number of models found for MSSM configurations (red), allowing for a massive $U$ (1) (blue).

## Pati-Salam models

One in a
Billion:
MSSM-like
D-Brane
Statistics
Florian
Gmeiner

In addition we consider possible Pati-Salam models with gauge group

$$
S U(4) \times S U(2)_{L} \times S U(2)_{R}
$$

[see e.g. Cvetic et al.]

- Condition: Intersection numbers between $\operatorname{SU}(4)$ and both SU(2) stacks have to be equal
- Number of generations: We did not see three generation models (for the same reason as in the MSSM case)


## Distribution of generations

One in a Billion: MSSM-like D-Brane Statistics

Florian Gmeiner

Introduction
Methods
Resuits
All models
MSSM
Pati-Salam
Hidden sector
Gauge couplings
Correlations
Conclusions


Number of models found for Pati-Salam configurations.

## Hidden sector

One in a Billion: MSSM-like D-Brane Statistics

Florian Gmeiner

Introduction
Methods
Results
All models
MSSM
Pati-Salam Hidden sector Gauge coupling Correlations Conctusions

Besides the standard model or Pati-Salam gauge group we have in general a hidden sector

$$
G=G_{S M} \oplus H
$$

Question
Are the distributions in the hidden sector different from the distributions in the full set of models?

No, they are not. The distribution of gauge group factors or chirality in the hidden sector of standard model or Pati-Salam configurations is basically the same as in the full set of models. $\rightsquigarrow$ Some properties of our models might be generic in the sense that they do not depend on the constraints for the visible sector

## Hidden sector

One in a Billion: MSSM-like D-Brane Statistics

Florian Gmeiner

Introduction
Methods
Results
All models
MSSM
Pati-Salam
Hidden sector
Gauge couplings
Correlations
Conclusions

## Question

Are the distributions in the hidden sector different from the distributions in the full set of models?

Answer
No, they are not. The distribution of gauge group factors or chirality in the hidden sector of standard model or Pati-Salam configurations is basically the same as in the full set of models. $\rightsquigarrow$ Some properties of our models might be generic in the sense that they do not depend on the constraints for the visible sector.

## Hidden sector

One in a
Billion:
MSSM-like
D-Brane
Statistics
Florian
Gmeiner

## Question

Are the distributions in the hidden sector different from the distributions in the full set of models?

## Answer

No, they are not. The distribution of gauge group factors or chirality in the hidden sector of standard model or Pati-Salam configurations is basically the same as in the full set of models.
$\rightsquigarrow$ Some properties of our models might be generic in the sense that they do not depend on the constraints for the visible sector.

## Rank distribution in the hidden sector

One in a Billion: MSSM-like
D-Brane
Statistics
Florian
Gmeiner

Introduction
Methods
Results
All models
MSSM
Pati-Salam
Hidden sector
Gauge couplings
Correlations
Conclusions


Black boxes: All models, red stars: MSSM (massless $U(1)$ ), green diamonds: MSSM (all $U(1)$ ), blue triangles: Pati-Salam.

## $U(M)$ distribution in the hidden sector

One in a Billion: MSSM-like
D-Brane Statistics

Florian Gmeiner

Introduction
Methods
Results
All models

## MSSM

Pati-Salam
Hidden sector
Gauge couplings
Correlations
Conclusions


Black boxes: All models, red stars: MSSM (massless $U(1)$ ), green diamonds: MSSM (all $U(1)$ ), blue triangles: Pati-Salam.

## (0) <br> Rank vs Chirality

One in a Billion: MSSM-like
D-Brane
Statistics
Florian
Gmeiner

Introduction
Methods
Results
All models
MSSM
Pati-Salam
Hidden sector
Gauge couplings
Correlations
Conclusions


Form top-left to bottom-right: All models, MSSM-like, massive MSSM, Pati-Salam.

## Gauge couplings

One in a
Billion:
MSSM-like
D-Brane
Statistics
Florian
Gmeiner
So far we considered properties of the models which are topological, in the sense that they depend on the brane configuration only. A geometric quantity one might consider are the gauge couplings $\alpha_{s}, \alpha_{w}$ and $\alpha_{Y}$.

In principle they should be considered at low energy, but this would imply that we use the renormalization group to evolve them down from their values at the string scale.
$\rightsquigarrow$ We do not do this, but consider their string-scale values just to get some hints about their behaviour.

## Gauge couplings

One in a
Billion:
MSSM-like
D-Brane
Statistics
Florian
Gmeiner

Introduction
Methods
Results
All mode
MSSM
Pati-Salam
Hidden sector
Gauge couplings Correlations

## Calculation of the gauge couplings

$$
\frac{1}{\alpha_{a}}=\frac{c}{\kappa_{a}} \frac{1}{\hat{b} \sqrt{\prod_{i=1}^{3} R_{1}^{(i)} R_{2}^{(i)}}} \sum_{I=0}^{3} \hat{X}^{I} U_{I}
$$

with some normalization constant $c=\frac{1}{2 \sqrt{2}} \frac{M_{\text {Planck }}}{M_{s}}$ and $\kappa_{a} \in\{1,2\}$, depending if we have a $U(N)$ or $S O(N)$ stack.
Note: Explicit dependence on the complex structure.

Conjecture about relations
There exists a conjecture that (most) intersecting brane models should obey the relation

## Gauge couplings

## One in a Billion: MSSM-like D-Brane Statistics <br> Florian Gmeiner



Conjecture about relations
There exists a conjecture that (most) intersecting brane models should obey the relation

$$
\frac{1}{\alpha_{Y}}=\frac{2}{3} \frac{1}{\alpha_{s}}+\frac{1}{\alpha_{w}} .
$$

## Distribution of $\alpha_{s} / \alpha_{w}$

One in a Billion: MSSM-like D-Brane Statistics

Florian Gmeiner

Introduction
Methods
Results
All models
MSSM
Pati-Salam
Hidden sector
Gauge couplings Correlations

Conclusions
\#models


One in a
Billion:
MSSM-like
D-Brane Statistics

Florian
Gmeiner

The Weinberg angle $\sin ^{2} \theta$ is given by

$$
\sin ^{2} \theta=\frac{\alpha_{Y}}{\alpha_{w}+\alpha_{Y}}
$$

If the conjectured relation between the coupling constants is correct we would have the following relation between $\sin ^{2} \theta$ and $\alpha_{s} / \alpha_{w}$

$$
\sin ^{2} \theta=\frac{3}{2} \frac{1}{\alpha_{w} / \alpha_{s}+3}
$$

One in a
Billion:
MSSM-like
D-Brane
Statistics
Florian
Gmeiner

The Weinberg angle $\sin ^{2} \theta$ is given by

$$
\sin ^{2} \theta=\frac{\alpha_{Y}}{\alpha_{w}+\alpha_{Y}}
$$

If the conjectured relation between the coupling constants is correct we would have the following relation between $\sin ^{2} \theta$ and $\alpha_{s} / \alpha_{w}$

$$
\sin ^{2} \theta=\frac{3}{2} \frac{1}{\alpha_{w} / \alpha_{s}+3}
$$

## Result

$88 \%$ of all models fulfill this relation.

## Values for $\sin ^{2} \theta$

One in a Billion: MSSM-like D-Brane Statistics Florian Gmeiner

Introduction
Methods
Results
All models
MSSM
Pati-Salam
Hidden sector
Gauge couplings Correlations

Conclusions


Logarithmic plot of $\alpha_{s} / \alpha_{w}$ against $\sin ^{2} \theta$. Each dot represents a class of models with the same values.
The conjectured relation is shown as a red curve.

## Correlations

One in a
Billion:
MSSM-like
D-Brane Statistics

Florian
Gmeiner

Introduction
Methods
Results
All models
MSSM
Pati-Salam
Hidden sector
Gauge coupling
Correlations

## Question

Are the atomic properties of the models (like existence of certain gauge groups, total rank, chirality, etc.) correlated?

Yes, some of them are, but only global properties, for example the mean chirality and the total rank of the gauge group.

## Correlations

## Question

Are the atomic properties of the models (like existence of certain gauge groups, total rank, chirality, etc.) correlated?

Answer
Yes, some of them are, but only global properties, for example the mean chirality and the total rank of the gauge group.

## Correlations

## Conjecture

Correlations between different constraining properties are very small. If this is true, it would be possible to make predictions about the probability to find models with specific properties without constructing them.

Calculate correlation between different properties

## Correlations

One in a
Billion:
MSSM-like
D-Brane
Statistics
Florian
Gmeiner

## Conjecture

Correlations between different constraining properties are very small. If this is true, it would be possible to make predictions about the probability to find models with specific properties without constructing them.

## How to check this?

Calculate correlation between different properties

$$
\frac{|P(1 \wedge 2)-P(1) P(2)|}{P(1 \wedge 2)+P(1) P(2)}
$$

## Correlations

One in a Billion:<br>MSSM-like D-Brane Statistics<br>Florian<br>Gmeiner

Introduction
Methods
Results
All models
MSSM
Pati-Salam
Hidden sector
Gauge couplings
Correlations
Conclusions


Correlations between the existence of $U(3)$ and $U(2) / \operatorname{Sp}(2)$ gauge groups.

## Estimate of three generation MSSMs

One in a
Billion:
MSSM-like
D-Brane
Statistics
Florian
Gmeiner

Using this we can try to estimate the number of standard models with three generations in the complete setup, although we have not explicitly constructed a single one.


## Estimate of three generation MSSMs

One in a
Billion:
MSSM-like
D-Brane
Statistics
Florian
Gmeiner

Using this we can try to estimate the number of standard models with three generations in the complete setup, although we have not explicitly constructed a single one.

| Restriction | Factor |
| :--- | ---: |
| gauge factor $U(3)$ | 0.0816 |
| gauge factor $U(2) / S p(2)$ | 0.992 |
| No symmetric representations | 0.839 |
| Massless $U(1)_{Y}$ | 0.423 |
| Three generations of quarks | $2.92 \times 10^{-5}$ |
| Three generations of leptons | $1.62 \times 10^{-3}$ |
| Total | $1.3 \times 10^{-9}$ |

(matches with Gepner model constructions from Schellekens et.al.)

## Estimates

One in a Billion: MSSM-like D-Brane Statistics
Florian
Gmeiner

Introduction
Methods
Results
All models
MSSM
Pati-Salam
Hidden sector
Gauge coupling
Correlations
Conclusions

## Question

How good is this estimate?
Compare with estimates done in the same way for models with 2 or 4 generations, where we have exact results.


## Estimates

## Question

How good is this estimate?
Compare with estimates done in the same way for models with 2 or 4 generations, where we have exact results.

| \# generations | \# of models found | estimated \# |
| ---: | ---: | ---: |
| 2 | 162921 | 188908 |
| 3 | 0 | 0.2 |
| 4 | 3898 | 3310 |

Estimates are better then expected (given the fact that we
ignore correlations, which we can not even quantify...)

## Estimates

## Question

How good is this estimate?
Compare with estimates done in the same way for models with 2 or 4 generations, where we have exact results.

| \# generations | \# of models found | estimated \# |
| ---: | ---: | ---: |
| 2 | 162921 | 188908 |
| 3 | 0 | 0.2 |
| 4 | 3898 | 3310 |

## Answer

Estimates are better then expected (given the fact that we ignore correlations, which we can not even quantify...)

One in a Billion: MSSM-like D-Brane Statistics

Florian
Gmeiner

Introduction

Methods
Resuits
Conclusions
(1) Introduction

Motivation
Type II orientifold models
(2) Methods of statistical analysis

Computer search
Number of solutions
(3) Results

Full set of models
Searching for MSSM-like models
Results for Pati-Salam models
Statistics of the hidden sector
Gauge couplings
Correlations
(4) Conclusions

## Conclusions

One in a
Billion:
MSSM-like
D-Brane
Statistics
Florian
Gmeiner

## Summary

- Standard model configurations are heavily suppressed from a statistical point of view.
- There exist non-trivial overall statistical correlations between physical observables.
- The constraining properties of realistic models are quite uncorrelated.
$\rightsquigarrow$ features of distributions of sm-properties can be estimated without explicit calculation.
- Results should be compared with gauge sector from dual theories (M-theory, heterotic) Generated data can also be used to look for unified models (e.g $\operatorname{SU}(5)$ ).

One in a
Billion:
MSSM-like
D-Brane
Statistics
Florian
Gmeiner

## Summary

- Standard model configurations are heavily suppressed from a statistical point of view.
- There exist non-trivial overall statistical correlations between physical observables.
- The constraining properties of realistic models are quite uncorrelated.
$\rightsquigarrow$ features of distributions of sm-properties can be estimated without explicit calculation.


## Outlook

- Results should be compared with gauge sector from dual theories (M-theory, heterotic).
- Generated data can also be used to look for unified models (e.g SU(5)).

One in a Billion: MSSM-like D-Brane Statistics

Florian
Gmeiner

Introduction
Methods
Results
Conclusions

Thank you!

