Motivation
Current screening practices for patients with augmentation mammoplasty create unwarranted outcomes:
• Doubles radiation dose to patient
• Causes pain to patients with implant encapsulation
• Drastically increase the total imaging time, reducing patient throughput

Goal
Determine the feasibility of s-DBT as an effective screening tool for patients with augmentation mammoplasty.

Methods
Mammoplasty models were created using a combination of BR3D phantom slabs (CIRS Model 020) and Natrelle brand implants (Allergan, Inc.).
• Either two or four BR3D slabs were used (one was the target slab).
 - 6 spec clusters (400 µm - 130 µm in diameter)
 - 7 fibers 10 mm in length (150 μm - 600 μm in diameter)
 - 6 spheroidal masses (1.8 mm - 6.32 mm in diameter)
• 200 cc saline and gel silicone implants, 400 cc saline implant

All models were imaged on an s-DBT system and on a Hologic Selenia Dimensions using 2D mammography.
• Equivalent entrance doses were used between modalities.

All images were scored by a trained radiologist by counting the number of visible structures.

Results
In all models, s-DBT performed better or equivalent to 2D mammography in visualization of fibers, masses, and specs.

From the plot above, it can be seen that there is no significant difference between s-DBT and 2D mammography in visualization of specs (p > 0.01).

S-DBT significantly outperformed 2D mammography in visualization of fibers (p < 0.01). An average of 3 more fibers were visible in s-DBT than 2D mammography for each model.

When imaging masses, s-DBT significantly outperformed 2D mammography (p< 0.01). An average of 2 more masses were visible in s-DBT than 2D mammography for each model.

Advantages over DBT systems
• Higher spatial resolution than continuous motion DBT systems (for visualization of microcalcifications)
• Faster acquisition time than DBT systems
• High system stability
• Capable of producing various configurations without a change in spatial resolution

Conclusions
• S-DBT significantly outperformed 2D mammography in visualization of fibers and masses.
• There was no statistical difference between s-DBT and 2D mammography in visualization of microcalcifications.
• An s-DBT system could be a valuable tool for screening patients that have breast augmentation. S-DBT could have a potential decrease in pain, radiation dose, and an increase in patient throughput for these patients.

Acknowledgements
The project is supported by the National Cancer Institute under grant number U54CA119343. We would like to thank Hologic for providing the Selenia Dimension Tomosynthesis System and for technical support. We would like to thank Dr. Lynn Damitz (Department of Plastic Surgery, University of North Carolina at Chapel Hill) for her support and supplying the implants.

References